Press "Enter" to skip to content

Parallel Processing In R

Chaitanya Sagar shows a few methods for parallelizing code in R:

Parallel programming may seem a complex process at first but the amount of time saved after executing tasks in parallel makes it worth the try. Functions such as lapply() and sapply() are great alternatives to time consuming looping functions while parallel, foreach and doParallel packages are great starting points to running tasks in parallel. These parallel processes are based on functions and are also modular. However, with great power comes a risk of code crashes. Hence it is necessary to be careful and be aware of ways to control memory usage and error handling. It is not necessary to parallelize every piece of code that you write. You can always write sequential code and decide to parallelize the parts which take significant amounts of time. This will help in further reducing out of memory instances and writing robust and fast codes. The use of parallel programing method is growing and many packages now have parallel implementations available. With this article. one can dive deep into the world of parallel programming and make full use of the vast memory and processing power to generate output quickly. The full code for this article is as follows.

If you’re using Microsoft R server, there are additional parallelism options. H/T R-Bloggers