Building Graph Tables

Tomaz Kastrun uses a set of e-mails as his SQL Server 2017 graph table data source:

To put the graph database to the test, I took bunch of emails from a particular MVP SQL Server distribution list (content will not be shown and all the names will be anonymized). On my gmail account, I have downloaded some 90MiB of emails in mbox file format. With some python scripting,  only FROM and SUBJECTS were extracted:

writer.writerow(['from','subject'])
for index, message in enumerate(mailbox.mbox(infile)): content = get_content(message) row = [ message['from'].strip('>').split('<')[-1], decode_header(message['subject'])[0][0],"|" ] writer.writerow(row)

This post walks you through loading data, mostly.  But at the end, you can see how easy it is to find who replied to whose e-mails.

Related Posts

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

Measuring Closeness Centrality in Graphs

Niko Neugebauer explains the concept of Closeness Centrality: The real center of the network or also known as The King of the Network, Closeness Centrality is a measure which represents the relative location of the Vertice to the center of the network, or better to say the average distance to all other Vertices within that […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930