Kafka Offset Management With Spark Streaming

Guru Medasana and Jordan Hambleton explain how to perform Kafka offset management when using Spark Streaming:

Enabling Spark Streaming’s checkpoint is the simplest method for storing offsets, as it is readily available within Spark’s framework. Streaming checkpoints are purposely designed to save the state of the application, in our case to HDFS, so that it can be recovered upon failure.

Checkpointing the Kafka Stream will cause the offset ranges to be stored in the checkpoint. If there is a failure, the Spark Streaming application can begin reading the messages from the checkpoint offset ranges. However, Spark Streaming checkpoints are not recoverable across applications or Spark upgrades and hence not very reliable, especially if you are using this mechanism for a critical production application. We do not recommend managing offsets via Spark checkpoints.

The authors give several options, so check it out and pick the one that works best for you.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930