Lamba Architecture Basics

Michael Walker walks through the basics of the Lambda architecture:

Lambda architecture – developed by Nathan Marz – provides a clear set of architecture principles that allows both batch and real-time or stream data processing to work together while building immutability and recomputation into the system. Batch processes high volumes of data where a group of transactions is collected over a period of time. Data is collected, entered, processed and then batch results produced. Batch processing requires separate programs for input, process and output. An example is payroll and billing systems. In contrast, real-time data processing involves a continual input, process and output of data. Data must be processed in a small time period (or near real-time). Customer services and bank ATMs are examples.

Lambda architecture has three (3) layers:

  • Batch Layer

  • Serving Layer

  • Speed Layer

I haven’t heard much about the Lambda and Kappa architectures lately, so when I saw this, I figured it was time for a refresher.

Related Posts

Working With Skewed Data In Pig

Dmitry Tolpeko explains how you can use the Weighted Range Partitioner in Apache Pig to work with highly skewed data: The problem is that there are 3,000 map tasks are launched to read the daily data and there are 250 distinct event types, so the mappers will produce 3,000 * 250 = 750,000 files per day. That’s […]

Read More

Spark Streaming Using DStreams Or DataFrames?

Yaroslav Tkachenko contrasts the two methods for operating on data with Spark Streaming: Spark Streaming went alpha with Spark 0.7.0. It’s based on the idea of discretized streams or DStreams. Each DStream is represented as a sequence of RDDs, so it’s easy to use if you’re coming from low-level RDD-backed batch workloads. DStreams underwent a lot […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930