Lamba Architecture Basics

Michael Walker walks through the basics of the Lambda architecture:

Lambda architecture – developed by Nathan Marz – provides a clear set of architecture principles that allows both batch and real-time or stream data processing to work together while building immutability and recomputation into the system. Batch processes high volumes of data where a group of transactions is collected over a period of time. Data is collected, entered, processed and then batch results produced. Batch processing requires separate programs for input, process and output. An example is payroll and billing systems. In contrast, real-time data processing involves a continual input, process and output of data. Data must be processed in a small time period (or near real-time). Customer services and bank ATMs are examples.

Lambda architecture has three (3) layers:

  • Batch Layer

  • Serving Layer

  • Speed Layer

I haven’t heard much about the Lambda and Kappa architectures lately, so when I saw this, I figured it was time for a refresher.

Related Posts

Event Sourcing On Kafka

Adam Warski shows how you can use Apache Kafka as your event sourcing data source: There’s a number of great introductory articles, so this is going to be a very brief introduction. With event sourcing, instead of storing the “current” state of the entities that are used in our system, we store a stream of events that relate to these […]

Read More

The Basics Of Kafka Security

Stephane Maarek has a nice post covering some of the basics of securing an Apache Kafka cluster: Once your Kafka clients are authenticated, Kafka needs to be able to decide what they can and cannot do. This is where Authorization comes in, controlled by Access Control Lists (ACL). ACL are what you expect them to be: […]

Read More


June 2017
« May Jul »