Sentiment Analysis In R

Stefan Feuerriegel and Nicolas Pröllochs have a new package in CRAN:

Our package “SentimentAnalysis” performs a sentiment analysis of textual contents in R. This implementation utilizes various existing dictionaries, such as QDAP or Loughran-McDonald. Furthermore, it can also create customized dictionaries. The latter uses LASSO regularization as a statistical approach to select relevant terms based on an exogenous response variable.

I’m not sure how it stacks up to external services, but it’s another option available to us.

Related Posts

Anomaly Detection With Python

Robert Sheldon continues his SQL Server Machine Learning Series: As important as these concepts are to working Python and MLS, the purpose in covering them was meant only to provide you with a foundation for doing what’s really important in MLS, that is, using Python (or the R language) to analyze data and present the […]

Read More

The Theory Behind cdata

John Mount has a video explaining the concepts behind cdata: We also have two really nifty articles on the theory and methods: Fluid data reshaping with cdata Coordinatized Data: A Fluid Data Specification Please give it a try! Click through for the video, which I found very helpful in tying together a number of data […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930