Using OtterTune To Tune Databases

Dana Van Aken, Geoff Gordon, and Any Pavlo show off OtterTune, which uses machine learning techniques to tune database management systems like MySQL and Postgres:

OtterTune, a new tool that’s being developed by students and researchers in the Carnegie Mellon Database Group, can automatically find good settings for a DBMS’s configuration knobs. The goal is to make it easier for anyone to deploy a DBMS, even those without any expertise in database administration.

OtterTune differs from other DBMS configuration tools because it leverages knowledge gained from tuning previous DBMS deployments to tune new ones. This significantly reduces the amount of time and resources needed to tune a new DBMS deployment. To do this, OtterTune maintains a repository of tuning data collected from previous tuning sessions. It uses this data to build machine learning (ML) models that capture how the DBMS responds to different configurations. OtterTune uses these models to guide experimentation for new applications, recommending settings that improve a target objective (for example, reducing latency or improving throughput).

In this post, we discuss each of the components in OtterTune’s ML pipeline, and show how they interact with each other to tune a DBMS’s configuration. Then, we evaluate OtterTune’s tuning efficacy on MySQL and Postgres by comparing the performance of its best configuration with configurations selected by database administrators (DBAs) and other automatic tuning tools.

This is potentially a very interesting technology and is not the only one of its kind—we’ve seen Microsoft enter this space as well for SQL Server index and tuning recommendations.

Related Posts

Markov Chains In Python

Sandipan Dey shows off various uses of Markov chains as well as how to create one in Python: Perspective. In the 1948 landmark paper A Mathematical Theory of Communication, Claude Shannon founded the field of information theory and revolutionized the telecommunications industry, laying the groundwork for today’s Information Age. In this paper, Shannon proposed using a Markov chain to […]

Read More

Anomaly Detection With Python

Robert Sheldon continues his SQL Server Machine Learning Series: As important as these concepts are to working Python and MLS, the purpose in covering them was meant only to provide you with a foundation for doing what’s really important in MLS, that is, using Python (or the R language) to analyze data and present the […]

Read More


June 2017
« May Jul »