Using OtterTune To Tune Databases

Dana Van Aken, Geoff Gordon, and Any Pavlo show off OtterTune, which uses machine learning techniques to tune database management systems like MySQL and Postgres:

OtterTune, a new tool that’s being developed by students and researchers in the Carnegie Mellon Database Group, can automatically find good settings for a DBMS’s configuration knobs. The goal is to make it easier for anyone to deploy a DBMS, even those without any expertise in database administration.

OtterTune differs from other DBMS configuration tools because it leverages knowledge gained from tuning previous DBMS deployments to tune new ones. This significantly reduces the amount of time and resources needed to tune a new DBMS deployment. To do this, OtterTune maintains a repository of tuning data collected from previous tuning sessions. It uses this data to build machine learning (ML) models that capture how the DBMS responds to different configurations. OtterTune uses these models to guide experimentation for new applications, recommending settings that improve a target objective (for example, reducing latency or improving throughput).

In this post, we discuss each of the components in OtterTune’s ML pipeline, and show how they interact with each other to tune a DBMS’s configuration. Then, we evaluate OtterTune’s tuning efficacy on MySQL and Postgres by comparing the performance of its best configuration with configurations selected by database administrators (DBAs) and other automatic tuning tools.

This is potentially a very interesting technology and is not the only one of its kind—we’ve seen Microsoft enter this space as well for SQL Server index and tuning recommendations.

Related Posts

What TDE Does To Query Performance

Matthew McGiffen has a few tests on using Transparent Data Encryption: By the time it had been executed 5 times (with the memory flushed between each execution) each query read about 600,000 pages sized at 8kb each – just under 5GB. If it took 50 seconds on the decryption of those pages, then each page […]

Read More

Combining Keras With Apache MXNet

Lai Wei, et al, show how to build a neural network in Keras 2 using MXNet as the engine: Distributed training with Keras 2 and MXNet This article shows how to install Keras-MXNet and demonstrates how to train a CNN and an RNN. If you tried distributed training with other deep learning engines before, you […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930