The Continued Importance Of ETL

Kevin Feasel

2017-05-08

ETL

Andy Leonard explains that good old ETL remains vital to an organization:

A Problem

As Jen points out earlier in her Analytics Market Commoditization and Consolidation post (you should read it all – it’s awesome – like all of Jen’s posts!) many analytics solution providers share the “Same look, same marketing story, same saves time and allows users [to] avoid evil IT.”

I can hear some of you thinking, “Are you telling us analytics doesn’t work, Andy?” Goodness no. I’m telling you hype and sales strategy work in the analytics market as well as anywhere. When asked why a solution may not perform to expectations, the #1 response is “your data is not clean.”

Data engineering (think ETL specifically designed for analytics and “big data”) is the backbone behind data science.  To Andy’s point, the data engineer’s job is to get clean, context-heavy data in front of a data scientist, the same way a “classical” Business Intelligence specialist works with analysts.

Related Posts

Azure Data Factory and Schema Drift

Mark Kromer walks us through two techniques we can use in Azure Data Factory to deal with schema drift: Azure Data Factory’s Mapping Data Flows have built-in capabilities to handle complex ETL scenarios that include the ability to handle flexible schemas and changing source data. We call this capability “schema drift“. When you build transformations […]

Read More

Troubleshooting AWS Database Migration Service Errors

Samir Behara takes us through troubleshooting AWS Database Migration Service issues: For troubleshooting any issues with AWS DMS, it is necessary to have logs enabled. The DMS logs would typically give a better picture and helps find errors or warnings that would indicate the root cause of the failure. If the logs are not available […]

Read More

Categories