Choosing A Hadoop Data Format

Silvia Oliveros has a set of considerations to help you choose a file format for your data in Hadoop:

What does your pipeline look like, and what steps are involved?

Some of the file formats were optimized to work in certain situations. For example, Sequence files were designed to easily share data between Map Reduce (MR) jobs, so if your pipeline involves MR jobs then Sequence files make an excellent option. In the same vein, columnar data formats such as Parquet and ORC were designed to optimize query times; if the final stage of your pipeline needs to be optimized, using a columnar file format will increase speed while querying data.

At first, I’d suggest just using delimited files, as it’s easiest that way.  Once you have developed a bit of Hadoop maturity, then it makes sense to think about whether rowstore formats (like Parquet and Avro) or columnstore formats (like ORC) make sense for a particular data set.

Related Posts

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

ElasticMapReduce And RStudio

Tanzir Musabbir demonstrates how to set up Amazon ElasticMapReduce to include an RStudio edge node: RStudio Server provides a browser-based interface for R and a popular tool among data scientists. Data scientist use Apache Spark cluster running on  Amazon EMR to perform distributed training. In a previous blog post, the author showed how you can install RStudio Server on Amazon […]

Read More


April 2017
« Mar May »