Choosing A Hadoop Data Format

Silvia Oliveros has a set of considerations to help you choose a file format for your data in Hadoop:

What does your pipeline look like, and what steps are involved?

Some of the file formats were optimized to work in certain situations. For example, Sequence files were designed to easily share data between Map Reduce (MR) jobs, so if your pipeline involves MR jobs then Sequence files make an excellent option. In the same vein, columnar data formats such as Parquet and ORC were designed to optimize query times; if the final stage of your pipeline needs to be optimized, using a columnar file format will increase speed while querying data.

At first, I’d suggest just using delimited files, as it’s easiest that way.  Once you have developed a bit of Hadoop maturity, then it makes sense to think about whether rowstore formats (like Parquet and Avro) or columnstore formats (like ORC) make sense for a particular data set.

Related Posts

Getting Started With Zeppelin

Sangeeta Gulia shows us how to get started building notebooks with Apache Zeppelin on top of Spark: There are 3 interpreter modes available in Zeppelin. 1) Shared Mode In Shared mode, a SparkContext and a Scala REPL is being shared among all interpreters in the group. So every Note will be sharing single SparkContext and single […]

Read More

Everyone’s Data Is Dirty

Chirag Shivalker hits the highlights on dirty data: It might sound a bit abrupt, but clean data is a myth. If your data is dirty, so is everyone else’s. Enterprises are more than dependent on data these days, and it is going to stay the same in coming years. They need to collect data in order […]

Read More


April 2017
« Mar May »