Temporal Tables For R Source Control

Tomaz Kastrun shares an unorthodox way of collecting historical R code changes:

I will not comment on the solution Bob provided, since I don’t know how their infrastructure, roles, security is set up. At this point, I am grateful for his comment. But what I will comment, is that there is no straightforward way or any out-of-the-box solution. Furthermore, if your R code requires any additional packages, storing the packages with your R code is not that bad idea, regardless of traffic or disk overhead. And versioning the R code is something that is for sure needed.

To continue from previous post, getting or capturing R code, once it gets to Launchpad, is tricky. So storing R code it in a database table or on file system seems a better idea.

It’s an interesting concept.  My preference is to use R Tools for Visual Studio and a more traditional source control mechanism.  It involves keeping source control up to date, but that’s a good practice to follow in any case.

Related Posts

Housing Prices In Ames, Iowa: A Kaggle Competition

Kathryn Bryant and M. Aaron Owen share their Kaggle experiences.  First, Kathryn, et al: The lifecycle of our project was a typical one. We started with data cleaning and basic exploratory data analysis, then proceeded to feature engineering, individual model training, and ensembling/stacking. Of course, the process in practice was not quite so linear and […]

Read More

Data Wrangling At Scale

John Mount has a short article showing off the cdata package: Suppose we needed to un-pivot this data into a row oriented representation. Often big data transform steps can achieve a much higher degree of parallelization with “tall data”. With the cdata package this transform is easy and performant, as we show below. Read the whole thing.

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930