MERGE In Hive

Kevin Feasel

2017-04-10

Hadoop

Carter Shanklin notes that Hive now has the ability to run MERGE statements:

As scalable as Apache Hadoop is, many workloads don’t work well in the Hadoop environment because they need frequent or unpredictable updates. Updates using hand-written Apache Hive or Apache Spark jobs are extremely complex.  Not only are developers responsible for the update logic, they must also implement all rollback logic, detect and resolve write conflicts and find some way to isolate downstream consumers from in-progress updates. Hadoop has limited facilities for solving these problems and people who attempted it usually ended up limiting updates to a single writer and disabling all readers while updates are in progress.

This approach is too complicated and can’t meet reasonable SLAs for most applications. For many, Hadoop became just a place for analytics offload — a place to copy data and run complex analytics where they can’t interfere with the “real” work happening in the EDW.

This post mostly describes the gains rather than showing code, but it does show that Hive developers are looking at expanding beyond common Hadoop warehousing scenarios.

Related Posts

Long-Term Storage In Kafka

Jay Kreps shows us that you can use Kafka as a primary data store: The short answer is that it’s not insane, people do this all the time, and Kafka was actually designed for this type of usage. But first, why might you want to do this? There are actually a number of use cases, […]

Read More

Creating A Simple Kafka Streams Application

Bill Bejeck has built a simple Kafka Streams application for us: This blog post will quickly get you off the ground and show you how Kafka Streams works. We’re going to make a toy application that takes incoming messages and upper-cases the text of those messages, effectively yelling at anyone who reads the message. This […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930