ggedit 0.2.0

Jonathan Sidi announces ggedit 0.2.0:

ggedit is an R package that is used to facilitate ggplot formatting. With ggedit, R users of all experience levels can easily move from creating ggplots to refining aesthetic details, all while maintaining portability for further reproducible research and collaboration.
ggedit is run from an R console or as a reactive object in any Shiny application. The user inputs a ggplot object or a list of objects. The application populates Bootstrap modals with all of the elements found in each layer, scale, and theme of the ggplot objects. The user can then edit these elements and interact with the plot as changes occur. During editing, a comparison of the script is logged, which can be directly copied and shared. The application output is a nested list containing the edited layers, scales, and themes in both object and script form, so you can apply the edited objects independent of the original plot using regular ggplot2 grammar.

This makes modifying ggplot2 visuals a lot easier for people who aren’t familiar with the concept of aesthetics and layers—like, say, the marketing team or management.

Related Posts

The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R: PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the […]

Read More

Tidy Data Is Normalized Data

I emphasize the link between a tidy dataframe and a normalized data structure: The kicker, as Wickham describes on pages 4-5, is that normalization is a critical part of tidying data.  Specifically, Wickham argues that tidy data should achieve third normal form. Now, in practice, Wickham argues, we tend to need to denormalize data because […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930