Understanding Neural Nets

David Smith links to a video which explains how neural networks do their thing:

In R, you can train a simple neural network with just a single hidden layer with the nnet package, which comes pre-installed with every R distribution. It’s a great place to start if you’re new to neural networks, but the deep learning applications call for more complex neural networks. R has several packages to check out here, including MXNetdarchdeepnet, and h2o: see this post for a comparison. The tensorflow package can also be used to implement various kinds of neural networks.

R makes it pretty easy to run one, though it then becomes important to understand regularization as a part of model tuning.

Related Posts

Connecting To Elasticsearch With R

Jerod Johnson has a sample of connecting to Elasticsearch with R: You will need the following information to connect to Elasticsearch as a JDBC data source: Driver Class: Set this to cdata.jdbc.elasticsearch.ElasticsearchDriver. Classpath: Set this to the location of the driver JAR. By default, this is the lib subfolder of the installation folder. The DBI functions, […]

Read More

Voice Control For Shiny Apps

Over at Jumping Rivers, an example of using a Javascript library to control a page using voice commands: I have found that performance across all devices and browsers is definitely not equal. By far the best browser I have found for viewing the apps is Google Chrome. I have also tended to find that my […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031