Dr. Elephant: Where Does My Hadoop Cluster Hurt?

Carl Steinbach looks back at Dr. Elephant one year later:

What we needed to introduce to the job-tuning equation was a series of questions like those asked by a physician making a diagnosis: a step-by-step process that guides the user through the problem-solving process, while also educating them at the same time.

So we created Dr. Elephant, a system that automatically detects under-performing jobs, diagnoses the root cause, and guides the owner of the job through the treatment process. Dr. Elephant makes it easy to identify jobs that are wasting resources, as well as jobs that can achieve better performance without sacrificing efficiency. Perhaps most importantly, Dr. Elephant makes it easy to act on these insights by making job-level performance tuning accessible to users regardless of their previous skill level. In the process, Dr. Elephant has helped to ease the tension that previously existed between user productivity on one side and cluster efficiency on the other.

LinkedIn has made this project open source if you want to check it out in your environment.

Related Posts

Function Calls Missing From dm_exec_query_stats

Kendra Little blogs about a data collection oddity with functions in SQL Server: Some of my functions in the demo code were showing up just fine. I was really puzzled by that. I thought … Maybe this is a bug with ‘CREATE OR ALTER’? A sign of some weird memory pressure? Something introduced in SQL […]

Read More

Kafka Partitioning Strategies

Amy Boyle shares some thoughts on Kafka partitioning strategy: If you have enough load that you need more than a single instance of your application, you need to partition your data. The producer clients decide which topic partition data ends up in, but it’s what the consumer applications will do with that data that drives […]

Read More


March 2017
« Feb Apr »