Dr. Elephant: Where Does My Hadoop Cluster Hurt?

Carl Steinbach looks back at Dr. Elephant one year later:

What we needed to introduce to the job-tuning equation was a series of questions like those asked by a physician making a diagnosis: a step-by-step process that guides the user through the problem-solving process, while also educating them at the same time.

So we created Dr. Elephant, a system that automatically detects under-performing jobs, diagnoses the root cause, and guides the owner of the job through the treatment process. Dr. Elephant makes it easy to identify jobs that are wasting resources, as well as jobs that can achieve better performance without sacrificing efficiency. Perhaps most importantly, Dr. Elephant makes it easy to act on these insights by making job-level performance tuning accessible to users regardless of their previous skill level. In the process, Dr. Elephant has helped to ease the tension that previously existed between user productivity on one side and cluster efficiency on the other.

LinkedIn has made this project open source if you want to check it out in your environment.

Related Posts

Working With Skewed Data In Pig

Dmitry Tolpeko explains how you can use the Weighted Range Partitioner in Apache Pig to work with highly skewed data: The problem is that there are 3,000 map tasks are launched to read the daily data and there are 250 distinct event types, so the mappers will produce 3,000 * 250 = 750,000 files per day. That’s […]

Read More

Spark Streaming Using DStreams Or DataFrames?

Yaroslav Tkachenko contrasts the two methods for operating on data with Spark Streaming: Spark Streaming went alpha with Spark 0.7.0. It’s based on the idea of discretized streams or DStreams. Each DStream is represented as a sequence of RDDs, so it’s easy to use if you’re coming from low-level RDD-backed batch workloads. DStreams underwent a lot […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031