Using Prophet For Stock Price Predictions

Marcelo Perlin looks at Facebook’s Prophet to see if it works well for predicting stock price movements:

The previous histogram shows the total return from randomly generated signals in 10^{4} simulations. The vertical line is the result from using prophet. As you can see, it is a bit higher than the average of the distribution. The total return from prophet is lower than the return of the naive strategy in 27.5 percent of the simulations. This is not a bad result. But, notice that we didn’t add trading or liquidity costs to the analysis, which will make the total returns worse.

The main results of this simple study are clear: prophet is bad at point forecasts for returns but does quite better in directional predictions. It might be interesting to test it further, with more data, adding trading costs, other forecasting setups, and see if the results hold.

This is a very interesting article, worth reading.  H/T R Bloggers

Related Posts

Visualizing with Heatmaps in R

Anisa Dhana shows how you can create a quick heatmap plot in R: To give your own colors use the scale_fill_gradientn function.ggplot(dat, aes(Age, Race)) + geom_raster(aes(fill = BMI)) + scale_fill_gradientn(colours=c("white", "red")) This is a quick example using ggplot2 but there are other heatmap libraries available too.

Read More

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031