Building A Python Project Template

Henk Griffioen shows how to create a standardized project in Python, focusing on data science scenarios:

Project structures often organically grow to suit people’s needs, leading to different project structures within a team. You can consider yourself lucky if at some point in time you find, or someone in your team finds, a obscure blog post with a somewhat sane structure and enforces it in your team.

Many years ago I stumbled upon ProjectTemplate for R. Since then I’ve tried to get people to use a good project structure. More recently DrivenData (what’s in a name?) released their more generic Cookiecutter Data Science.

The main philosophies of those projects are:

  • A consistent and well-organized structure allows people to collaborate more easily.

  • Your analyses should be reproducible and your structure should enable that.

  • A projects starts from raw data that should never be edited; consider raw data immutable and only edit derived sources.

This is a set of prescriptions and focuses on the phase before the project actually kicks off.

Related Posts

Sales Predictions with Pandas

Megan Quinn shows how you can use Pandas and linear regression to predict sales figures: Pandas is an open-source Python package that provides users with high-performing and flexible data structures. These structures are designed to make analyzing relational or labeled data both easy and intuitive. Pandas is one of the most popular and quintessential tools leveraged […]

Read More

Linear Regression Assumptions

Stephanie Glen has a chart which explains the four key assumptions behind when Ordinary Least Squares is the Best Linear Unbiased Estimator: If any of the main assumptions of linear regression are violated, any results or forecasts that you glean from your data will be extremely biased, inefficient or misleading. Navigating all of the different assumptions […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031