HBase Compaction

Kevin Feasel

2017-03-03

Hadoop

Jitendra Bafna explains how HBase compaction works:

Compaction is a process by which HBase cleans itself. It comes in two flavors: minor compaction and major compaction.

Minor compaction is the process of combining the configurable number of smaller HFiles into one Large HFile. Minor compaction is very important because without it, reading particular rows requires many disk reads and can reduce overall performance.

Major compaction is a process of combining the StoreFiles of regions into a single StoreFile. It also deletes remove and expired versions. By default, major compaction runs every 24 hours and merges all StoreFiles into single StoreFile. After compaction, if the new larger StoreFile is greater than a certain size (defined by property), the region will split into new regions.

Read on for more information about compaction and data locality, which is a totally different topic.

Related Posts

Databricks Runtime 5.2 Released

Nakul Jamadagni announces Databricks Runtime 5.2: Delta Time TravelTime Travel, released as an Experimental feature, adds the ability to query a snapshot of a table using a timestamp string or a version, using SQL syntax as well as DataFrameReader options for timestamp expressions.Sample codeSELECT count() FROM events TIMESTAMP AS OF timestamp_expressionSELECT count() FROM events VERSION AS OF version Time travel looks a bit like temporal tables in SQL Server.

Read More

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031