Data Wrangling: R Versus M

Kevin Feasel

2016-12-05

Power BI, R

Ryan Wade argues that R is a better language choice for working with data in Power BI than M:

Now let’s do something that I think is pretty slick. Let’s create a data set that combines the home games of the Pacers (IND) and the home games of the Hawks (ATL). Given the naming convention used by the files we will have to identify the files in our working directory that starts with an eight numeric digits > then a period > then a 3 character team abbreviation for the away team > then either “ATL” or “IND” > then finally “.csv”. We can create a regular expression to find the files that matches that pattern. I did so in the code below:

I’m interested in catching the rest of the series.  This is a controversial statement that I’m not entirely sold on yet, but Ryan does set the stage for his full argument.

Related Posts

Power Query and the Benefits of Immutability

Chris Webb explains why immutable expressions can be faster to run multiple times than mutable processes: Instead of taking the value #”Sorted Rows”[Column2]{0} and storing it in the variable Column2 then adding Column2 four times, I’m  adding the expression #”Sorted Rows”[Column2]{0} together four times. The query returns the same number as the previous query. However […]

Read More

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

Categories

December 2016
MTWTFSS
« Nov Jan »
 1234
567891011
12131415161718
19202122232425
262728293031