Kafka Consumer

Kevin Feasel

2016-10-18

Hadoop

I build a consumer and aggregator of Kafka data:

From here, I hook into the OnMessage event just like before, and like before we decode the Kafka payload and turn it into a string.  Unlike before, however, I call Newtonsoft’s DeserializeObject method and return a Flight type, which I’ve defined above.  This is the same definition as in the Producer, so in a production-quality environment, I’d pull that out to a single location rather than duplicating it.

Going back to the main function, I call the consumer.Start() method and let ‘er rip.  When I’m ready to aggregate, I’ll hit the enter key and that’ll call consumer.Stop().  When that happens, I’m going to have up to 7 million records in a list called flights.  Out of all of this information, I only need two attributes:  the destination state and the arrival delay in minutes.  I get those by using the map function on my sequence of flights, taking advantage of F#’s match syntax to get all relevant scenarios safely and put the result into a tuple.  The resulting sequence of tuples is called flightTuple.  I pass that into the delaysByState function.

By the time I give this presentation, I’m going to change the way I aggregate just a little bit to cut down on the gigs of RAM necessary to do this operation.  But hey, at least it works…

Related Posts

Hortonworks Data Platform 3.0 Released

Saumitra Buragohain, et al, announce the newest version of the Hortonworks Data Platform: Highlighted Apache Hive features include: Workload management for LLAP:  You can assign resource pools within LLAP pool and allocate resources on a per user or per group basis. This enables support for large multi-tenant deployments. ACID v2 and ACID on by default:  We are […]

Read More

Replicating Data In HDFS Between Clusters

Murali Ramasami and Niru Anisetti have an article showing how to use the Hortonworks Data Lifecycle Manager to set up replication between two Hadoop clusters: Data Lifecycle Manager (DLM) delivers on the promise of location-agnostic, secure replication by encapsulating and copying data seamlessly across physical private storage and public cloud environments. This empowers businesses to […]

Read More

Categories

October 2016
MTWTFSS
« Sep Nov »
 12
3456789
10111213141516
17181920212223
24252627282930
31