Spark Overview

Jen Underwood provides an overview of the Apache Spark project:

Spark provides a comprehensive framework to manage big data processing with a variety of data set types including text and graph data. It can also handle batch pipelines and real-time streaming data. Using Spark libraries, you can create big data analytics apps in Java, Scala, Clojure, and popular R and Python languages.

Spark brings analytics pros an improved MapReduce type query capability with more performant data processing in memory or on disk. It can be used with datasets that are larger than the aggregate memory in a cluster. Spark also has savvy lazy evaluation of big data queries which helps with workflow optimization and reuse of intermediate results in memory. TheSpark API is easy to learn.

One of my taglines is, Spark is not the future of Hadoop; Spark is the present of Hadoop.  If you want to get into this space, learn how to work with Spark.

Related Posts

Event Sourcing On Kafka

Adam Warski shows how you can use Apache Kafka as your event sourcing data source: There’s a number of great introductory articles, so this is going to be a very brief introduction. With event sourcing, instead of storing the “current” state of the entities that are used in our system, we store a stream of events that relate to these […]

Read More

The Basics Of Kafka Security

Stephane Maarek has a nice post covering some of the basics of securing an Apache Kafka cluster: Once your Kafka clients are authenticated, Kafka needs to be able to decide what they can and cannot do. This is where Authorization comes in, controlled by Access Control Lists (ACL). ACL are what you expect them to be: […]

Read More


October 2016
« Sep Nov »