Hive And Impala

Kevin Feasel



Carter Shanklin and Nita Dembla run a performance comparison of Hive LLAP versus Impala:

Before we get to the numbers, an overview of the test environment, query set and data is in order. The Impala and Hive numbers were produced on the same 10 node d2.8xlarge EC2 VMs. To prepare the Impala environment the nodes were re-imaged and re-installed with Cloudera’s CDH version 5.8 using Cloudera Manager. The defaults from Cloudera Manager were used to setup / configure Impala 2.6.0. It is worth pointing out that Impala’s Runtime Filtering feature was enabled for all queries in this test.

Data: While Hive works best with ORCFile, Impala works best with Parquet, so Impala testing was done with all data in Parquet format, compressed with Snappy compression. Data was partitioned the same way for both systems, along the date_sk columns. This was done to benefit from Impala’s Runtime Filtering and from Hive’s Dynamic Partition Pruning.

I’m impressed with both of these projects.

Related Posts

Kafka Partitioning Strategies

Amy Boyle shares some thoughts on Kafka partitioning strategy: If you have enough load that you need more than a single instance of your application, you need to partition your data. The producer clients decide which topic partition data ends up in, but it’s what the consumer applications will do with that data that drives […]

Read More

Single-Node Hadoop 3 Installation

Mark Litwintschik has a fairly simple guide for installing Hadoop 3 on a single node for testing: This post is meant to help people explore Hadoop 3 without feeling the need they should be using 50+ machines to do so. I’ll be using a fresh installation of Ubuntu 16.04.2 LTS on a single computer. The […]

Read More


October 2016
« Sep Nov »