Hive Going In-Memory

Kevin Feasel



Carter Shanklin and Nita Dembla discuss Hive memory-handling optimizations:

Let’s put this architecture to the test with a realistic dataset size and workload. Our previous performance blog, “Announcing Apache Hive 2.1: 25x Faster Queries and Much More”, discussed 4 reasons that LLAP delivers dramatically faster performance versus Hive on Tez. In that benchmark we saw 25+x performance boosts on ad-hoc queries with a dataset that fit entirely into the cluster’s memory.

In most cases, datasets will be far too large to fit in RAM so we need to understand if LLAP can truly tackle the big data challenge or if it’s limited to reporting roles on smaller datasets. To find out, we scaled the dataset up to 10 TB, 4x larger than aggregate cluster RAM, and we ran a number of far more complex queries.

Table 3 below shows how Hive LLAP is capable of running both At Speed and At Scale. The simplest query in the benchmark ran in 2.68 seconds on this 10 TB dataset while the most complex query, Query 64 performed a total of 37 joins and ran for more than 20 minutes.

Given how much faster memory is than disk, and given Spark’s broad adoption, this makes sense as a strategy for Hive’s continued value.

Related Posts

Tips For Using PolyBase With Cloudera QuickStart VM

I have a post on using Cloudera’s QuickStart VM with PolyBase: Here’s something which tripped me up a little bit while connecting to Cloudera using SQL Server. The data node name, instead of being quickstart.cloudera like the host name, is actually localhost. You can change this in /etc/cloudera-scm-agent/config.ini. Because PolyBase needs to have direct access to the data nodes, […]

Read More

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More


October 2016
« Sep Nov »