Graph Analytics With Spark

Mirko Kämpf looks at using GraphFrames on Spark:

Next, we’ll define a DataFrame by loading data from a CSV file, which is stored in HDFS.

Our datafile facebook_combined.txt contains two columns to represent links between network nodes. The first column is called source (src), and the second is the destination (dst) of the link. (Some other systems, such as Gephi, use “source” and “target” instead.)

First we define a custom schema, and than we load the DataFrame, using SQLContext.

It sounds like Spark graph database engines are early in their lifecycle, but they might already be useful for simple analysis.

Related Posts

Enabling Exactly-Once Kafka Streams

Guozhang Wang wraps up his exactly-once series in Kafka: When restarting the application from the point of failure, we would then try to resume processing from the previously remembered position in the input Kafka topic, i.e. the committed offset. However, since the application was not able to commit the offset of the processed message A before crashing […]

Read More

Error Handling In Scala

Manish Mishra gives a few examples of how to handle errors in Scala: Try[T] is another construct to capture the success or a failure scenarios. It returns a value in both cases. Put any expression in Try and it will return Success[T] if the expression is successfully evaluated and will return Failure[T] in the other case […]

Read More


October 2016
« Sep Nov »