Whither Hadoop?

Kevin Feasel

2016-10-03

Hadoop

Kashif Saiyed looks at recent trends in Hadoop:

  • 2016 and beyond – this is an interesting timing for “Big Data”. Cloudera’s valuation has dropped by 38%. Hortonwork’s valuation has dropped by almost 40%, forcing them to cut the professional services department. Pivotal has abandoned its Hadoop distribution, going to market jointly with Hortonworks. What happened and why? I think the main driver of this decline is enterprise customers that started adoption of technology in 2014-2015. After a couple of years playing around with “Big Data” they has finally understood that Hadoop is only an instrument for solving specific problems, it is not a turnkey solution to take over your competitors by leveraging the holy power of “Big Data”. Moreover, you don’t need Hadoop if you don’t really have a problem of huge data volumes in your enterprise, so hundreds of enterprises were hugely disappointed by their useless 2 to 10TB Hadoop clusters – Hadoop technology just doesn’t shine at this scale. All of this has caused a big wave of priorities re-evaluation by enterprises, shrinking their investments into “Big Data” and focusing on solving specific business problems.

There are some good points around product saturation and a general skills shortage, but even if you look at it pessimistically, this is a product with 30% market penetration, and which is currently making the move from being a large batch data processing product to a streaming + batch processing product.

Related Posts

Generating Load For Kafka With JMeter

Anup Shirolkar shows us a way to use JMeter to generate load for Apache Kafka clusters: The Anomalia Machina is going to require (at least!) one more thing as stated in the intro, loading with lots of data! Kafka is a log aggregation system and operates on a publish-subscribe mechanism. The Kafka cluster in Anomalia Machina […]

Read More

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Categories

October 2016
MTWTFSS
« Sep Nov »
 12
3456789
10111213141516
17181920212223
24252627282930
31