Notebook Practices

Jonathan Whitmore has good practices for managing Jupyter notebooks:

Here’s an example of how we use git and GitHub. One beautiful new feature of Github is that they now render Jupyter Notebooks automatically in repositories.

When we do our analysis, we do internal reviews of our code and our data science output. We do this with a traditional pull-request approach. When issuing pull-requests, however, looking at the differences between updated .ipynb files, the updates are not rendered in a helpful way. One solution people tend to recommend is to commit the conversion to .py instead. This is great for seeing the differences in the input code (while jettisoning the output), and is useful for seeing the changes. However, when reviewing data science work, it is also incredibly important to see the output itself.

So far, I’ve treated notebooks more as presentation media and used tools like R Studio for tinkering.  This shifts my priors a bit.

Related Posts

Deploying Jupyter Notebooks

Teja Srivastasa has an example of deploying a Jupyter notebook for production use on AWS: No one can deny how large the online support community for data science is. Today, it’s possible to teach yourself Python and other programming languages in a matter of weeks. And if you’re ever in doubt, there’s a StackOverflow thread or […]

Read More

JupyterLab Now Available

Project Jupyter announces the general availability of JupyterLab: JupyterLab is an interactive development environment for working with notebooks, code and data. Most importantly, JupyterLab has full support for Jupyter notebooks. Additionally, JupyterLab enables you to use text editors, terminals, data file viewers, and other custom components side by side with notebooks in a tabbed work area. JupyterLab […]

Read More


September 2016
« Aug Oct »