Notebook Practices

Jonathan Whitmore has good practices for managing Jupyter notebooks:

Here’s an example of how we use git and GitHub. One beautiful new feature of Github is that they now render Jupyter Notebooks automatically in repositories.

When we do our analysis, we do internal reviews of our code and our data science output. We do this with a traditional pull-request approach. When issuing pull-requests, however, looking at the differences between updated .ipynb files, the updates are not rendered in a helpful way. One solution people tend to recommend is to commit the conversion to .py instead. This is great for seeing the differences in the input code (while jettisoning the output), and is useful for seeing the changes. However, when reviewing data science work, it is also incredibly important to see the output itself.

So far, I’ve treated notebooks more as presentation media and used tools like R Studio for tinkering.  This shifts my priors a bit.

Related Posts

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Literate Programming And Notebooks

David Smith sums up a debate on notebooks versus literate programming: There’s no video yet available of Joel’s talk, but you can guess the theme of that opening slide, and walking through the slides conveys the message well, I think. Yuhui Xie, author and creator of the rmarkdown package, provides a detailed summary and response to Joel’s talk, […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930