Pearson’s Correlation Coefficient

Kevin Feasel



Mala Mahadevan explains correlation coefficients:

The statistical definition of Pearson’s R Coefficient, as it is called, can be found in detail here for those interested. A value of 1 indicates that there is a strong positive correlation(the two variables in question increase together), 0 indicates no correlation between them, and -1 indicates a strong negative correlation (the two variables decrease together). But you rarely get a perfect -1, 0 or 1. Most values are fractional and interpreted as follows:
High correlation: .5 to 1.0 or -0.5 to 1.0.
Medium correlation: .3 to .5 or -0.3 to .5.
Low correlation: .1 to .3 or -0.1 to -0.3.

Mala includes R and T-SQL code so you can follow along.

Related Posts

ggplot2 Geoms And Aesthetics

Tyler Rinker digs into ggplot2’s geoms and aesthetics: I thought it my be fun to use the geoms aesthetics to see if we could cluster aesthetically similar geoms closer together. The heatmap below uses cosine similarity and heirarchical clustering to reorder the matrix that will allow for like geoms to be found closer to one […]

Read More

Legible Function Chaining In R

John Mount shows a few techniques for legible function chaining with R: The dot intermediate convention is very succinct, and we can use it with base R transforms to get a correct (and performant) result. Like all conventions: it is just a matter of teaching, learning, and repetition to make this seem natural, familiar and legible. My […]

Read More


September 2016
« Aug Oct »