Pearson’s Correlation Coefficient

Kevin Feasel



Mala Mahadevan explains correlation coefficients:

The statistical definition of Pearson’s R Coefficient, as it is called, can be found in detail here for those interested. A value of 1 indicates that there is a strong positive correlation(the two variables in question increase together), 0 indicates no correlation between them, and -1 indicates a strong negative correlation (the two variables decrease together). But you rarely get a perfect -1, 0 or 1. Most values are fractional and interpreted as follows:
High correlation: .5 to 1.0 or -0.5 to 1.0.
Medium correlation: .3 to .5 or -0.3 to .5.
Low correlation: .1 to .3 or -0.1 to -0.3.

Mala includes R and T-SQL code so you can follow along.

Related Posts

Linear Regression in Power BI

Joseph Yeates shows how to implement linear regression in Power BI: The goal of a simple linear model is to fit a line onto this plot to summarize the shape of the data using the equation above. The “a” value is the slope of the fitted line (rise over run) and the “b” value is […]

Read More


Nina Zumel announces a new version of WVPlots on CRAN: WVPlots was originally a catch-all package of ggplot2 visualizations that we at Win-Vector tended to use repeatedly, and wanted to turn into “one-liners.” A consequence of this is that the older visualizations had our preferred color schemes hard-coded in. More recent additions to the package sometimes had palette […]

Read More


September 2016
« Aug Oct »