Pearson’s Correlation Coefficient

Kevin Feasel



Mala Mahadevan explains correlation coefficients:

The statistical definition of Pearson’s R Coefficient, as it is called, can be found in detail here for those interested. A value of 1 indicates that there is a strong positive correlation(the two variables in question increase together), 0 indicates no correlation between them, and -1 indicates a strong negative correlation (the two variables decrease together). But you rarely get a perfect -1, 0 or 1. Most values are fractional and interpreted as follows:
High correlation: .5 to 1.0 or -0.5 to 1.0.
Medium correlation: .3 to .5 or -0.3 to .5.
Low correlation: .1 to .3 or -0.1 to -0.3.

Mala includes R and T-SQL code so you can follow along.

Related Posts

The Importance of Aliasing in Subqueries

Gail Shaw explains an unexpected result when writing a statement with a subquery: The column name in the temp table is missing an I, probably just a typo, but it has some rather pronounced effects. The obvious next question is why the select with the subquery in it didn’t fail, after all, the query asks […]

Read More

Naive Bays in R

Zulaikha Lateef takes us through the Naive Bayes algorithm and implementations in R: Naive Bayes is a Supervised Machine Learning algorithm based on the Bayes Theorem that is used to solve classification problems by following a probabilistic approach. It is based on the idea that the predictor variables in a Machine Learning model are independent of […]

Read More


September 2016
« Aug Oct »