Residuals

Simon Jackson discusses the concept of residuals:

The general approach behind each of the examples that we’ll cover below is to:

  1. Fit a regression model to predict variable (Y).

  2. Obtain the predicted and residual values associated with each observation on (Y).

  3. Plot the actual and predicted values of (Y) so that they are distinguishable, but connected.

  4. Use the residuals to make an aesthetic adjustment (e.g. red colour when residual in very high) to highlight points which are poorly predicted by the model.

The post is about 10% understanding what residuals are and 90% showing how to visualize them and spot major discrepancies.

Related Posts

Probabilities And Poker

Steve Miller has a notebook on 5-card draw probabilities: The population of 5 card draw hands, consisting of 52 choose 5 or 2598960 elements, is pretty straightforward both mathematically and statistically. So of course ever the geek, I just had to attempt to show her how probability and statistics converge. In addition to explaining the […]

Read More

Visualization Over Kafka And KSQL

Shant Hovsepian shows off a data visualization tool which can read Kafka Streams data: KSQL is a game-changer not only for application developers but also for non-technical business users. How? The SQL interface opens up access to Kafka data to analytics platforms based on SQL. Business analysts who are accustomed to non-coding, drag-and-drop interfaces can […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031