Diagnosing Duplicate Records

Kevin Feasel

2016-08-22

ETL

Jesse Seymour walks through his process of finding and fixing unexpected duplicate key violations:

In this case, the error message is quite clear.  There is more than one row in the source (staging) that matches a single row in the target (data warehouse).  When we are warehousing data, we setup key fields that allow us to match up a record in staging to a record in the data warehouse.  In most systems, you can use the source system’s primary key to accomplish this.  After all, most systems use a RDBMS of some sort to store data.  However, in this case the source data is from a SharePoint list, and the only source key available is a list item ID.

So why are we not using that?  There is a very simple answer and that is because end users delete old data from the list, which can lead to a recycling of ID values from SharePoint.  If an ID gets recycled, then the data warehouse will improperly overwrite data in the fact table or discard the new row as a duplicate depending on how we configure the extract routine.

Figuring out the cause of the problem is a multi-step process, as Jesse shows.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Azure Data Factory V2 Or SSIS?

Merrill Aldrich explains the differences between Azure Data Factory V2 and SQL Server Integration Services: The next consideration is a bit more involved if you are new to data integration. Both of these tools excel at transporting data from place to place, but they have important differences in terms of what you can do to […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031