Over-Engineering

Dave Copeland discusses over-engineering problems:

The main problem with an over-engineered solution is that it takes longer to ship than is necessary. By definition, we are doing more than is necessary, and that will take longer to ship. There’s almost never a reason to prefer longer ship-times over shorter ones, all things being equal.

The more serious problem with over-engineering is the carry cost.

A carrying cost is a cost the team bears for having to maintain software and infrastructure. Each feature requires tests, monitoring, and maintenance. Each new feature is made in the context of those that came before it. This is why a feature that might’ve taken one week when the project was new requires a month to make in more mature project.

Read the whole thing and simplify your solutions.

Related Posts

The Forgotten Infrastructure Below Azure BI Architecture Diagrams

Meagan Longoria reminds us that there are several products which Azure BI projects need but which we tend to forget when building architectural diagrams: Let’s start with Azure Active Directory (AAD). In order to provision the resources in the diagram, your Azure subscription must already be associated with an Active Directory. AAD is Microsoft’s cloud-based […]

Read More

Data Transformation Tools In The Azure Space

James Serra gives us an overview of the major tools you would use for ETL and ELT in Azure: If you are building a big data solution in the cloud, you will likely be landing most of the source data into a data lake.  And much of this data will need to be transformed (i.e. […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031