Connecting Spark and Riak

Kevin Feasel

2016-08-15

Riak, Spark

Pavel Hardak discusses the Riak Connector for Apache Spark:

Modeled using principles from the “AWS Dynamo” paper, Riak KV buckets are good for scenarios which require frequent, small data-sized operations in near real-time, especially workloads with reads, writes, and updates — something which might cause data corruption in some distributed databases or bring them to “crawl” under bigger workloads. In Riak, each data item is replicated on several nodes, which allows the database to process a huge number of operations with very low latency while having unique anti-corruption and conflict-resolution mechanisms. However, integration with Apache Spark requires a very different mode of operation — extracting large amounts of data in bulk, so that Spark can do its “magic” in memory over the whole data set. One approach to solve this challenge is to create a myriad of Spark workers, each asking for several data items. This approach works well with Riak, but it creates unacceptable overhead on the Spark side.

This is interesting in that it ties together two data platforms whose strengths are almost the opposite:  one is great for fast, small writes of single records and the other is great for operating on large batches of data.

Related Posts

Batch Consumption from Kafka with Spark

Swapnil Chougule shares a few tips on performing batch processing of a Kafka topic using Apache Spark: Spark as a compute engine is very widely accepted by most industries. Most of the old data platforms based on MapReduce jobs have been migrated to Spark-based jobs, and some are in the phase of migration. In short, […]

Read More

Securely Accessing External Resources From Databricks AWS

Itai Weiss shows how you can securely hit external data sources when using Databricks for AWS: For security purposes, Databricks Apache Spark clusters are deployed in an isolated VPC dedicated to Databricks within the customer’s account. In order to run their data workloads, there is a need to have secure connectivity between the Databricks Spark […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031