Connecting Spark and Riak

Kevin Feasel

2016-08-15

Riak, Spark

Pavel Hardak discusses the Riak Connector for Apache Spark:

Modeled using principles from the “AWS Dynamo” paper, Riak KV buckets are good for scenarios which require frequent, small data-sized operations in near real-time, especially workloads with reads, writes, and updates — something which might cause data corruption in some distributed databases or bring them to “crawl” under bigger workloads. In Riak, each data item is replicated on several nodes, which allows the database to process a huge number of operations with very low latency while having unique anti-corruption and conflict-resolution mechanisms. However, integration with Apache Spark requires a very different mode of operation — extracting large amounts of data in bulk, so that Spark can do its “magic” in memory over the whole data set. One approach to solve this challenge is to create a myriad of Spark workers, each asking for several data items. This approach works well with Riak, but it creates unacceptable overhead on the Spark side.

This is interesting in that it ties together two data platforms whose strengths are almost the opposite:  one is great for fast, small writes of single records and the other is great for operating on large batches of data.

Related Posts

Spark Streaming DStreams

Manish Mishra explains the fundamental abstraction of Spark Streaming: Before going into details of the operations available on the DStream API, let us look at the input sources from which we can start a Stream. There are multiple ways in which we can get the inputs from e.g. Kafka, Flume, etc. Or simple Idle files. […]

Read More

Diagnosing TCP SACKs-Related Slowdown in Databricks

Chris Stevens, et al, walk us through troubleshooting a slowdown after using Linux images which have been patched for the TCP SACKs vulnerabilities: In order to figure out why the straggler task took 15 minutes, we needed to catch it in the act. We reran the benchmark while monitoring the Spark UI, knowing that all […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031