Understanding ROC Curves

Bob Horton explains ROC curves and shows how to create them in R:

ROC curves are commonly used to characterize the sensitivity/specificity tradeoffs for a binary classifier. Most machine learning classifiers produce real-valued scores that correspond with the strength of the prediction that a given case is positive. Turning these real-valued scores into yes or no predictions requires setting a threshold; cases with scores above the threshold are classified as positive, and cases with scores below the threshold are predicted to be negative. Different threshold values give different levels of sensitivity and specificity. A high threshold is more conservative about labelling a case as positive; this makes it less likely to produce false positive results but more likely to miss cases that are in fact positive (lower rate of true positives). A low threshold produces positive labels more liberally, so it is less specific (more false positives) but also more sensitive (more true positives). The ROC curve plots true positive rate against false positive rate, giving a picture of the whole spectrum of such tradeoffs.

ROC curves are one of the primary techniques for figuring out if a binary classifier “works.”

Related Posts

Deploying An R Service To Azure Kubernetes Service

Hong Ooi shows us how we can use Azure Container Registry and Azure Kubernetes Service to deploy an R model via Plumber: If you run this code, you should see a lot of output indicating that R is downloading, compiling and installing randomForest, and finally that the image is being pushed to Azure. (You will […]

Read More

Road Construction Incentive Contracts And R

Sebastian Kranz promotes an interesting RTutor project: Patrick Bajari and Gregory Lewis have collected a detailed sample of 466 road construction projects in Minnesota to study this question in their very interesting article¬†Moral Hazard, Incentive Contracts and Risk: Evidence from Procurement¬†in the Review of Economic Studies, 2014.They estimate a structural econometric model and find that […]

Read More


August 2016
« Jul Sep »