Fallacies of Data Science

Adnan Masood and David Lazar have a list of fallacies in the world of data science:

Extrapolating beyond the range of training data, especially in the case of time series data, is fine providing the data-set is large enough.

Strong Evidence is same as a Proof! Prediction intervals and confidence intervals are the same thing, just like statistical significance and practical significance.

These are some good things to think about if you’re getting into analytics.

Related Posts

Multi-Class Text Classification In Python

Susan Li has a series on multi-class text classification in Python.  First up is analysis with PySpark: Our task is to classify San Francisco Crime Description into 33 pre-defined categories. The data can be downloaded from Kaggle. Given a new crime description comes in, we want to assign it to one of 33 categories. The classifier […]

Read More

The Microsoft Team Data Science Process Lifecycle Versus CRISP-DM

Melody Zacharias compares Microsoft’s Team Data Science Process lifecycle with the CRISP-DM process: As I pointed out in my previous blog, the TDSP lifecycle is made up of five iterative stages: Business Understanding Data Acquisition and Understanding Modeling Deployment Customer Acceptance This is not very different from the six major phases used by the Cross […]

Read More


May 2016
« Apr Jun »