Fallacies of Data Science

Adnan Masood and David Lazar have a list of fallacies in the world of data science:

Extrapolating beyond the range of training data, especially in the case of time series data, is fine providing the data-set is large enough.

Strong Evidence is same as a Proof! Prediction intervals and confidence intervals are the same thing, just like statistical significance and practical significance.

These are some good things to think about if you’re getting into analytics.

Related Posts

Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC): The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated […]

Read More

Naive Bayes Against Large Data Sets

Catherine Bernadorne walks us through using Naive Bayes for sentiment analysis: The more data that is used to train the classifier, the more accurate it will become over time. So if we continue to train it with actual results in 2017, then what it predicts in 2018 will be more accurate. Also, when Bayes gives […]

Read More


May 2016
« Apr Jun »