POCs As A Problem

Bill Vorhies argues that data science proofs of concept fall short of the mark:

If you do a quick read through of some of the Gartner or O’Reilly studies you’ll quickly see that a lack of executive sponsorship is one of the major barriers to adoption.  So isn’t the POC a good way to get the attention of the C-level?  Yes and no.

If as we described above it leads to the adoption of a series of stand alone ‘technology projects’, then no.  If it was really necessary to start with little firecracker POCs to demonstrate the explosive strategic value of becoming data-driven, then maybe so.

Here’s a simple change of mindset (borrowed from John Weathington referenced above) that instead of focusing on Proof of Concept, we should instead create projects to demonstrate Proof of Value.  By focusing on value we change the orientation so that any projects are aligned with value to the company.  In other words, they are aligned with the company’s strategic objectives.

This is an interesting argument which goes against my inclinations.  Check it out.

Related Posts

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas: In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft […]

Read More


May 2016
« Apr Jun »