Mapping German Postal Codes With R

Kevin Feasel



Achim Rumberger shows how to map German postal codes using R:

Just at this time Ari published his webinar about getting shape files into R. Which also includes a introduction to shape files to get you going, if you are new to it, as I am. I remembered Ari from his mail course introducing his great R-package (choroplethr). By the way this is a terrible name, being a biologist by heart, I always type “chloroplethr”, as in “chlorophyll”, and this is not found by the R package manager. [Editor’s note: I agree!]

Next question, where do I get the shapefiles, describing Germany? A major search engine was of great help here. . Germany has some 8700 zip code areas, so expect some time for rendering the file, if you do on your computer. Right on this side one can also find a dataset which might act as a useful warm up practice to display statistical data in a geographical context. Other sources are

This is really cool.

Related Posts

Economic Articles With Data Included

Sebastian Kranz has a Shiny app to help you find economic papers with included data: One gets some information about the size of the data files and the used code files. I also tried to find and extract a README file from each supplement. Most README files explain whether all results can be replicated with […]

Read More

Giving A Name To The R Pipe

John Mount noodles an idea from Hadley Wickham: I’d say this fails on at least two counts, the first “%then%” doesn’t seem grammatical (as d is a noun), and magrittr pipes can’t be associated with a new name (as they are implemented by looking for theirselves by name in captured unevaluated code). However, the wrapr dot arrow pipe can take on new names. […]

Read More


May 2016
« Apr Jun »