Bike Rental Demand Estimation

Kevin Feasel

2016-05-11

R

The Revolution Analytics blog has a Microsoft-driven article on estimating bike rental demand with Microsoft R Server:

In addition to the original features in the raw data, we add number of bikes rented in each of the previous 12 hours as features to provide better predictive power. We create acomputeLagFeatures() helper function to compute the 12 lag features and use it as the transformation function in rxDataStep().

Note that rxDataStep() processes data chunk by chunk and lag feature computation requires data from previous rows. In computLagFeatures(), we use the internal function .rxSet() to save the last n rows of a chunk to a variable lagData. When processing the next chunk, we use another internal function .rxGet() to retrieve the values stored in lagData and compute the lag features.

This is a great article for anybody wanting to dig into analytics, because they show their work.

Related Posts

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More

Using R To Hit Azure ML From Power BI

Leila Etaati shows how you can use R to hit an Azure ML endpoint to populate a data set in Power BI: You need to create a model in Azure ML Studio and create a web service for it. The traditional example in Predict a passenger on Titanic ship is going to survived or not? […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031