Key Components For A Successful Project

Ginger Grant lists five key components for a successful data analysis project:

Security is an obvious consideration which needs to be addressed up front. Data is a very valuable commodity and only people with appropriate access should be allowed to see it. What steps are going to be employed to ensure that happens? How much administration is going to be required to implement it? These questions need to be answered up front.

I want to extend special thanks to Ginger for putting security as the top item on the list.  Also, this seems like a pretty good set of criteria for most projects, so definitely check it out.

Related Posts

Polishing Uncalibrated Models

Nina Zumel takes an uncalibrated random forest model and applies a calibration technique to improve the estimate on one variable: In the previous article in this series, we showed that common ensemble models like random forest and gradient boosting are uncalibrated: they are not guaranteed to estimate aggregates or rollups of the data in an unbiased way. […]

Read More

Comparing Classification Model Quality

Stephanie Glen looks at ways to compare model evaluation for classification models: In part 1, I compared a few model evaluation techniques that fall under the umbrella of ‘general statistical tools and tests’. Here in Part 2 I compare three of the more popular model evaluation techniques for classification and clustering: confusion matrix, gain and lift chart, […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031