Key Components For A Successful Project

Ginger Grant lists five key components for a successful data analysis project:

Security is an obvious consideration which needs to be addressed up front. Data is a very valuable commodity and only people with appropriate access should be allowed to see it. What steps are going to be employed to ensure that happens? How much administration is going to be required to implement it? These questions need to be answered up front.

I want to extend special thanks to Ginger for putting security as the top item on the list.  Also, this seems like a pretty good set of criteria for most projects, so definitely check it out.

Related Posts

Python and R Data Reshaping

John Mount takes us through a couple of data shaping packages: The advantages of data_algebra and cdata are: – The user specifies their desired transform declaratively by example and in data. What one does is: work an example, and then write down what you want (we have a tutorial on this here).– The transform systems can print what a transform is going to […]

Read More

When to Use Different ML Algorithms

Stefan Franczuk explains the different categories of machine learning algorithms available in Talend: Clustering is the task of grouping together a set of objects in such a way, that objects in the same group are more similar to each other than to those in other groups. Clustering is really useful for identify separate groups and […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031