Linked Lists

Ewald Cress digs into linked lists to explain (deep) SQLOS internals:

The memory layout of a linked list doesn’t imply specific usage semantics. If we consistently insert at the head and remove from the tail, we have a queue. If we both insert and remove items from the head, we have a stack. And it is possible to have variations of these as well.

Finally, it is clear that insert and remove operations are multi-step, and the list is in an inconsistent state – i.e. not safe to traverse or modify – in the middle of such an operation. For this reason, locking semantics must be implemented. This will typically take the form of a spinlock which must be aquired before trying to access the list for any purpose. The object which owns the list head will then normally have a spinlock as a data member associated with the list head, although it is possible to have one spinlock protect multiple items beyond just a single linked list; this could be a sign of sane design, but conversely it means a coarser locking grain, which can sometimes work against you.

Even at this “simple” level, we’re digging pretty deep here.

Related Posts

Understanding Hash Match Aggregates

Itzik Ben-Gan continues his series on grouping and aggregating data by looking at the hash match aggregation process: The estimated CPU cost for the Hash Aggregate in the plan for Query 8 is 0.166344, and in Query 9 is 0.16903. It could be an interesting exercise to try and figure out exactly in what way […]

Read More

Row Width And Snapshot Isolation

Kendra Little shows us the impact that row width has on snapshot isolation: So I went to work to demonstrate row width impact on the version store — when only a tiny bit column is changed in the row. Here’s how I did the test: I created two tables, dbo.Narrow and dbo.Wide. They each each have a […]

Read More

Categories

May 2016
MTWTFSS
« Apr Jun »
 1
2345678
9101112131415
16171819202122
23242526272829
3031