Installing And Using SQL Server R Services

I have three blog posts on installing and using R in SQL Server.

First, installing SQL Server R Services:

I’m excited that CTP 3 of SQL Server 2016 is publicly available, in no small part because it is our first look at SQL Server R Services.  In this post, I’m going to walk through installing Don’t-Call-It-SSRS on a machine.

Then, using RODBC to connect a Linux machine with RStudio installed to a SQL Server instance:

Getting a Linux machine to talk to a SQL Server instance is harder than it should be.  Yes, Microsoft has a Linux ODBC driver and some easy setup instructions…if you’re using Red Hat or SuSE.  Hopefully this helps you get connected.

If you’re using RStudio on Windows, it’s a lot easier:  create a DSN using your ODBC Data Sources.

Finally, using SQL Server R Services:

So, what’s the major use of SQL Server R Services?  Early on, I see batch processing as the main driver here.  The whole point of getting involved with Revolution R is to create sever-quality R, so imagine a SQL Agent job which runs this procedure once a night against some raw data set.  The R job could build a model, process that data, and return a result set.  You take that result set and feed it into a table for reporting purposes.  I’d like to see more uses, but this is probably the first one we’ll see in the wild.

It’s a preview of a V1 product.  Keep that in mind.

The first and third posts are for CTP 3, so beware the time-sensitive material warnings.

Related Posts

Scatterplots For Multivariate Analysis

Neil Saunders declutters a complicated visual with a simple scatterplot: Sydney’s congestion at ‘tipping point’ blares the headline and to illustrate, an interactive chart with bars for city population densities, points for commute times and of course, dual-axes. Yuck. OK, I guess it does show that Sydney is one of three cities that are low density, […]

Read More

Using ggpairs To Find Correlations Between Variables In R

Akshay Mahale shows how to use the ggpairs function in R to see the correlation between different pairs of variables: From the above matrix for iris we can deduce the following insights: Correlation between Sepal.Length and Petal.Length is strong and dense. Sepal.Length and Sepal.Width seems to show very little correlation as datapoints are spreaded through out the plot area. Petal.Length and Petal.Width also shows strong correlation. Note: The […]

Read More


November 2015
« Jan Dec »