Using Prophet For Stock Price Predictions

Marcelo Perlin looks at Facebook’s Prophet to see if it works well for predicting stock price movements:

The previous histogram shows the total return from randomly generated signals in 10^{4} simulations. The vertical line is the result from using prophet. As you can see, it is a bit higher than the average of the distribution. The total return from prophet is lower than the return of the naive strategy in 27.5 percent of the simulations. This is not a bad result. But, notice that we didn’t add trading or liquidity costs to the analysis, which will make the total returns worse.

The main results of this simple study are clear: prophet is bad at point forecasts for returns but does quite better in directional predictions. It might be interesting to test it further, with more data, adding trading costs, other forecasting setups, and see if the results hold.

This is a very interesting article, worth reading.  H/T R Bloggers

Related Posts

Spark Changes In HDP 2.6

Vinay Shukla and Syed Mahmood talk about what’s new with Spark and Zeppelin in the Hortonworks Data Platform 2.6 update: SPARKR & PYSPARK Most data scientists use R & Python and with SparkR & PySpark respectively they can continue to leverage their familiarity with the R & Python languages. However, they need to use the Spark […]

Read More

Custom ggplot2 Subplots

Ilya Kashnitsky shows how to create custom subplots using ggplot2: Actually, ggplot2 is a very powerful and flexible tool that allows to draw figures with quite a complex layout. Today I want to show the code that aligns six square plots (actually, maps) just as in the figure above. And it’s all about the handy […]

Read More


March 2017
« Feb Apr »