Press "Enter" to skip to content

Category: Spark

Differences in Spark RDDs and DataSets

Brad Llewellyn looks at some of the differences between RDDs and DataSets in Spark:

We see that there are some differences between filtering RDDsData Frames and Datasets.  The first major difference is the same one we keep seeing, RDDs reference by indices instead of column names.  There’s also an interesting difference of using 2 =’s vs 3 =’s for equality operators. Simply put, “==” tries to directly equate two objects, whereas “===” tries to dynamically define what “equality” means.  In the case of filter(), it’s typically used to determine whether the value in one column (income, in our case) is equal to the value of another column (string literal “<=50K”, in our case).  In other words, if you want to compare values in one column to values in another column, “===” is the way to go.

Interestingly, there was another difference caused by the way we imported our data.  Since we custom-built our RDD parsing algorithm to use <COMMA><SPACE> as the delimiter, we don’t need to trim our RDD values.  However, we used the built-in sqlContext.read.csv() function for the Data Frame and Dataset, which doesn’t trim by default.  So, we used the ltrim() function to remove the leading whitespace.  This function can be imported from the org.apache.spark.sql.functions library.

Read on for more, including quite a few code samples.

Comments closed

An Introduction to Apache Livy

Guy Shilo explains why we should care about Apache Livy:

Apache Livy is an open source server that exposes Spark as a service. Its backend connects to a Spark cluster while the frontend enables REST API. This enables running it as the organization’s Spark gateway and even run in in docker containers.

Not only it enables running Spark jobs from anywhere, but it also enables shared Spark context and a shared RDD cache among all it’s users which is time and memory saving.

I will demonstrate here how to setup Apache Livy on one of the cluster’s nodes and on a separate server.

Click through for the demonstration.

Comments closed

Migrating Databricks Workspaces

Gerhard Brueckl has made DatabricksPS better:

I do not know what is/was the problem here but I did not have time to investigate but instead needed to come up with a proper solution in time. So I had a look what needs to be done for a manual export. Basically there are 5 types of content within a Databricks workspace:

– Workspace items (notebooks and folders)
– Clusters
– Jobs
– Secrets
– Security (users and groups)

For all of them an appropriate REST API is provided by Databricks to manage and also exports and imports. This was fantastic news for me as I knew I could use my existing PowerShell module DatabricksPS to do all the stuff without having to re-invent the wheel again.

I’ve used DatabricksPS and really like it for cases where I’d have to loop with the Databricks REST API—for example, when uploading files.

Comments closed

Resource Allocation in Spark Applications

The folks at Beginner’s Hadoop take us through resource allocation in Spark applications:

Tiny executors essentially means one executor per core. Following table depicts the values of our spar-config params with this approach:

Analysis: With only one executor per core, as we discussed above, we’ll not be able to take advantage of running multiple tasks in the same JVM. Also, shared/cached variables like broadcast variables and accumulators will be replicated in each core of the nodes which is 16 times. Also, we are not leaving enough memory overhead for Hadoop/Yarn daemon processes and we are not counting in ApplicationManager. NOT GOOD!

Read on for the full analysis.

Comments closed

Delta Lake Schema Enforcement

Burak Yavuz, et al, explain the concept of schema enforcement with Databricks Delta Lake:

Schema enforcement, also known as schema validation, is a safeguard in Delta Lake that ensures data quality by rejecting writes to a table that do not match the table’s schema. Like the front desk manager at a busy restaurant that only accepts reservations, it checks to see whether each column in data inserted into the table is on its list of expected columns (in other words, whether each one has a “reservation”), and rejects any writes with columns that aren’t on the list.

Something something “relational database” something something. They also walk us through some examples in a Databricks notebook, so check that out.

Comments closed

Spark Streaming DStreams

Manish Mishra explains the fundamental abstraction of Spark Streaming:

Before going into details of the operations available on the DStream API, let us look at the input sources from which we can start a Stream. There are multiple ways in which we can get the inputs from e.g. Kafka, Flume, etc. Or simple Idle files. To get the details on the available input sources supported by Spark, you can refer to this section. As part of this blog, we will take the example of Kafka.

Read on to see an example of pulling data from Kafka and converting inputs into microbatches.

Comments closed

Diagnosing TCP SACKs-Related Slowdown in Databricks

Chris Stevens, et al, walk us through troubleshooting a slowdown after using Linux images which have been patched for the TCP SACKs vulnerabilities:

In order to figure out why the straggler task took 15 minutes, we needed to catch it in the act. We reran the benchmark while monitoring the Spark UI, knowing that all but one of the tasks for the save operation would complete within a few minutes. Sorting the tasks in that stage by the Status column, it did not take long for there to be only one task in the RUNNING state. We had found our skewed task and the IP address in the Host column pointed us at the executor experiencing the regression.

This is a nice case study of network troubleshooting, so of course there are Wireshark screenshots in it.

Comments closed

RDDs, DataFrames, and Datasets in Spark

Brad Llewellyn walks us through the three key data structures in Apache Spark:

We see that creating an RDD can be done with one easy function.  In this snippet, sc represents the default SparkContext.  This is extremely important, but is better left for a later post.  SparkContext offers the .textFile() function which creates an RDD from a text file, parsing each line into it’s own element in the RDD.  These lines happen to represent CSV records.  However, there are many other common examples that use lines of free text.

It should also be noted that we can use the .collect() and .take() functions to view the contents of an RDD.  The difference between .collect() and .take() is that .take() allows us to specify the number of elements we want to retrieve, whereas .collect() returns the entire RDD.

My tendencies are probably skewed pretty heavily, but I live in DataFrames and almost never use raw RDDs anymore.

Comments closed

LSTM in Databricks

Vedant Jain shows us an example of solving a multivariate time series forecasting problem using LSTM networks:

LSTM is a type of Recurrent Neural Network (RNN) that allows the network to retain long-term dependencies at a given time from many timesteps before. RNNs were designed to that effect using a simple feedback approach for neurons where the output sequence of data serves as one of the inputs. However, long term dependencies can make the network untrainable due to the vanishing gradient problem. LSTM is designed precisely to solve that problem.

Sometimes accurate time series predictions depend on a combination of both bits of old and recent data. We have to efficiently learn even what to pay attention to, accepting that there may be a long history of data to learn from. LSTMs combine simple DNN architectures with clever mechanisms to learn what parts of history to ‘remember’ and what to ‘forget’ over long periods. The ability of LSTM to learn patterns in data over long sequences makes them suitable for time series forecasting.

This is a nice overview and as a bonus, there’s a notebook as well where you can try it on your own.

Comments closed

Databricks versus Mapping Data Flows

Helge Rege Gardsvoll contrasts Azure Databricks, Azure Data Factory Mapping Data Flows, and SQL Server Integration Services:

Mapping Data Flows
One of the many data flows from Microsoft these days providing, for the first time, data transformation capabilities within Data Factory. This is not a U-SQL script or Databricks notebook that is orchestrated from Data Factory, but a tool integrated. This means that you can reuse (many of) the datasets you have defined in Data Factory, while in Databricks you don’t.

Mapping Data Flows runs on top of Databricks, but the cluster is handled for you and you don’t have to write any of that Scala code yourself.

Read on for the full comparison.

Comments closed