Press "Enter" to skip to content

Category: Query Tuning

Aggregate Splitting in SQL Server 2019

Paul White takes us through a new trick the optimizer has learned:

The extended event query_optimizer_batch_mode_agg_split is provided to track when this new optimization is considered. The description of this event is:

Occurs when the query optimizer detects batch mode aggregation is likely to spill and tries to split it into multiple smaller aggregations.

Other than that, this new feature hasn’t been documented yet. This article is intended to help fill that gap.

Read on as Paul fills that gap.

Comments closed

Halloween Problem and Inserts

Jared Poche continues a dive into the Halloween Problem:

I would have expected us to scan the temp table, then have a LEFT JOIN to the base table. The Table Spool is the red flag that we have an issue with the plan, and is frequently seen with Halloween protections.

The index scan on the base table seems to be overkill since we’re joining on the primary key columns (the key lookup isn’t much of a concern). But we’re likely doing the scan because of the spool; it’s SQL Server’s way of getting all relevant records in one place at one time, breaking the normal flow of row mode operation, to make sure we don’t look up the same record multiple times.

Read on to see the execution plan as well as Jared’s fix.

Comments closed

Seeks are Better than Scans, Except when they Aren’t

Hugo Kornelis explains that both seeks and scans exist for a good reason:

Fact: You should never blindly trust anything you find on the internet. And right now, you are reading the internet. So why should you trust this?
You shouldn’t. At least, not blindly. You should verify. And what better way to verify then through demos!

There went my strategy of blindly trusting Hugo.

The rule of thumb I have heard and go by is, if you’re retrieving less than 1/2 of 1% of data, a seek is the best route. If you’re returning more than 20% of data, a scan is the best route. In between is the “it depends” zone, where either could potentially be better. But please do read Hugo’s post—it’s an important one for query tuners.

Comments closed

Getting the Last Query Plan Stats in SQL Server 2019

John Morehouse walks us through retrieving the actual query plan stats of the last run of an execution plan:

Currently, if you are not on SQL Server 2019 and wanted to see an execution plan, you would attempt to dive into the execution plan cache to retrieve an estimated plan.  Keep in mind that this just an estimated plan and the actual plan, while the shape should be the same, will have runtime metrics.  These  Actual runtime metrics could be, different than what is shown in the estimated plan, so it is important to get the actual whenever possible.

With the introduction of lightweight statistics, SQL Server can retain the metrics of the actual execution plan if enabled.  Note that this could introduce a slight increase in overhead, however, I haven’t yet seen it be determinantal. These metrics are vastly important when performing query tuning.

Read on to see the specific set of metrics you can pull and how to do it. This does require SQL Server 2019.

Comments closed

When Batch Mode on Rowstore Hurts Performance

Erik Darling walks us through a scenario where batch mode on rowstore can make performance of a query worse:

I’m not mad at 2019 or Batch Mode On Rowstore (BMOR) or anything.

But if I’m gonna get into it, I’m gonna document issues I run into so that hopefully they help you out, too.

One thing I ran into recently was where BMOR kicked in for a query and made it slow down.

Click through for the scenario, why it’s slower when using batch mode, and two ways you can improve the query.

Comments closed

Derived Table Nesting and Performance

Itzik Ben-Gan digs into some of the performance considerations around nested derived tables:

Unnesting/substitution of table expressions is a process of taking a query that involves nesting of table expressions, and as if substituting it with a query where the nested logic is eliminated. I should stress that in practice, there’s no actual process in which SQL Server converts the original query string with the nested logic to a new query string without the nesting. What actually happens is that the query parsing process produces an initial tree of logical operators closely reflecting the original query. Then, SQL Server applies transformations to this query tree, eliminating some of the unnecessary steps, collapsing multiple steps into fewer steps, and moving operators around. In its transformations, as long as certain conditions are met, SQL Server can shift things around across what were originally table expression boundaries—sometimes effectively as if eliminating the nested units. All of this in attempt to find an optimal plan.

In this article I cover both cases where such unnesting takes place, as well as unnesting inhibitors. That is, when you use certain query elements it prevent SQL Server from being able to move logical operators in the query tree, forcing it to process the operators based on the boundaries of the table expressions used in the original query.

That’s on my list for a second reading.

Comments closed

Local Variables with TOP and ORDER BY

Erik Darling points out issues with using local variables. First up is with TOP:

In case you missed it for some reason, check out this post of mine about local variables. Though it’s hard to imagine how you missed it, since it’s the single most important blog post ever written, even outside of SQL Server. It might even be more important than SQL Server. Time will tell.

While live streaming recently about paging queries, I thought that it might make an interesting post to see what happens when you use variables in places other than the where clause.

After several seconds of thinking about it, I decided that TOP would be a good enough place to muck around.

After that is ORDER BY:

I see this kind of pattern a lot in paging queries where people are doing everything in their power to avoid writing dynamic SQL for some reason.

It’s almost as if an entire internet work of SQL Server knowledge and advice doesn’t exist when they’re writing these queries.

Quite something. Quite something indeed.

I’d call out Erik’s ORDER BY examples by saying “C’mon, nobody does that!” if I hadn’t actually seen people do that…

Comments closed

What MAXDOP Controls

Pedro Lopes gives us an explanation of what MAXDOP really does for us:

There are plenty of blogs on these topics, and the official documentation does a good job of explaining these (in my opinion). If you want to know more about the guidelines and ways to override for specific queries, refer to the Recommendations section in the Configure the max degree of parallelism Server Configuration Option documentation page.

But what does MAXDOP control? A common understanding is that it controls the number of CPUs that can be used by a query – previous revisions of the documentation used this abstraction. And while that is a correct abstraction, it’s not exactly accurate.

This is definitely a nice companion piece to Paul White’s article on how MAXDOP works.

Comments closed

How MAXDOP Works

Paul White lets us in on a secret:

The nuance to the question is in the phrase “running concurrently”. There is a limit to the number of characters one can use in a Twitter poll. My intention was for people to focus on the number of threads that could have a status of RUNNING at any one moment.

There are various definitions for that status in different DMVs, but essentially RUNNING means actively executing on a processor — not waiting for its turn on a CPU or for some other resource to become available.

My expectation was that most people would think that MAXDOP 4 would limit a parallel query to using 4 CPU cores at any one moment in time. Indeed, that was the second most popular answer to the poll.

But read on to understand why 4 isn’t the correct answer.

1 Comment

Key Lookups and Self-Joins

Erik Darling has an interesting method for eliminating key lookups:

This post isn’t going to go terribly deep into anything, but I do want to make a few things about them more clear, because I don’t usually see them mentioned anywhere.

1. Lookups are joins between two indexes on the same table
2. Lookups can only be done via nested loops joins
3. Lookups can’t be moved around in the execution plan

I don’t want you to think that every lookup is bad and needs to be fixed, but I do want you to understand some of the limitations around optimizing them.

Definitely worth the read.

Comments closed