Tomaz Kastrun continues a series on Microsoft Fabric. First up is creating ML models:
Protip: Both experiments and the ML model version look similar, and you can intuitively switch between both of them. But do not get confused, as the ML Model version applies the best-selected model from the experiment and can be used for inference.
Then we switch context to data warehousing:
Comments closedToday we will start exploring the Fabric Data Warehouse.
With the data lake-centric logic, the data warehouse in Fabric is built on a distributed processing engine, that enables automated scaling. The SaaS experience creates a segway to easier analysis and reporting, and at the same time gives the ability to run heavy workloads against open data format, simply by using transact SQL (T-SQL). Microsoft OneLake gives all the services to hold a single copy of data and can be consumed in a data warehouse, datalake or SQL Analytics.