Press "Enter" to skip to content

Category: Indexing

Pulling Non-Clustered Index Data

Kenneth Fisher shows using a non-clustered index potentially to reconstruct corrupted data on a clustered index:

So why would you want to do this? Well lets say for example you have a table in a database where the clustered index has become corrupted. Let’s further say that no one mentioned this to you for .. say a year. (No judging!) So your only option at this point might be to use the REPAIR_ALLOW_DATA_LOSS of DBCC CHECKDB. But when you are done how much data has actually been lost? Can you get any of it back?

If you’ve lived a good life and are very lucky, you might recover all data this way.  Otherwise, it’s a good idea to run CHECKDB more frequently and check those backups regularly as well.

Comments closed

Columnstore Index Reorganization

Sunil Agarwal has a couple of posts on columnstore index defragmentation in SQL Server 2016.

Part 1:

Let us now look at how you can use REORGANIZE command to defragment your columnstore index. Note, this command is only supported for clustered columnstore index (CCI) and nonclustered columnstore index for disk-based tables. In the example below, I create an empty table and then create a clustered columnstore index and finally I load 300k rows.  SQL Server 2016 loads data from staging table into CCI in parallel when you specify TABLOCK hint. The machine I ran this test on has 4 logical processors so the 300k rows got divided into 75k each between 4 threads. Since each thread was loading < 102400 rows, the columnstore index ends up with 4 delta rowgroups as shown below.

Part 2:

A compressed rowgroup is considered as fragmented when any of the following two conditions is met

  • Less than 1 million rows but the trim_reason ( please refer to https://msdn.microsoft.com/en-us/library/dn832030.aspx ) is other than DICTIONARY_SIZE. If the size of a compressed rowgroup is reduced because it has reached the maximum dictionary size, then it can’t be further reduced

  • It has nonzero deleted rows that exceeds a minimum threshold.

I just got finished with a first draft of a script to determine whether reorganizing a clustered columnstore index partition would be worthwhile, so this is great timing.  I hope to make my script available soon, after I incorporate Sunil’s heuristics.

Comments closed

Index Usage Stats Bug Fixed

Kendra Little reports that rebuilding an index no longer clears out sys.dm_db_index_usage_stats:

Testing SQL Server 2016 RC0 today, I see that the bug for index_usage_stats has been fixed in this release! When I generate scans, seeks, and updates against an index, running ALTER INDEX REBUILD no longer resets the information. I can still tell which indexes have been used and which have not since the database came online, just like we had  in SQL Server 2008 R2 and prior.

Kendra has created a Connect item to fix a separate bug where rebuilding an index clears out the missing index recommendations for that table.

Comments closed

Using The YEAR Function

Kendra Little looks at the performance ramifications of using the YEAR() function:

But if we hover over that index seek, we can see in the tooltip that there’s a hidden predicate that is NOT a seek predicate. This is a hidden filter. And because this is SQL Server 2016, we can see “Number of Rows Read” — it had to read 9.3 million rows to count 1.9 million rows. It didn’t realize the 2006 rows were together– it checked all the females and examined the FakeBirthDateStamp column for each row.

Built-in functions can cause SARGability issues.

Comments closed

Rebuilding Indexes For Contiguity

SQL Sasquatch throws out an interesting question:  why would you rebuild an index which is 0.44% fragmented?

NC_TABLE1 is 36 total extents.  288 eight k pages.  2.25 mb. It can be read in 5 reads – one read for each contiguous run.
CI_TABLE1 is comprised of 48 extents.  3 mb. It can be read in 11 reads – again, one for each contiguous run.
The SQL Server instance has the -E startup option enabled.  Without that startup option, proportional fill algorithm would distribute incoming data to the 8 data files with a potential smallest allocation of a single 64k extent before rotating round-robin to the additional files in the filegroup.  With the -E startup option, the smallest possible new allocation by proportional fill is sixty four 64k extents – 4 mb.
That means if I can rebuild the indexes into new space at the tail of the files, the contiguity should be improved considerably.

I had never considered that the scenario described here before, so this was definitely interesting.

Comments closed

Columnstore Index Compression Delay

Niko Neugebauer found a “compression delay” option on columnstore indexes in SQL Server 2016 CTP 3.2:

In SQL Server 2016 the OLTP Systems have received a significant improvement – support for the Columnstore Indexes (disk-based Nonclustered Columnstore & In-memory based Clustered Columnstore).
In both cases we have as the base the underlying OLTP-style table, with a Delta-Store object (or Tail Row Group for InMemory tables), that will hold the new data being inserted or updated by the final users. The data that is being frequently updated in OLTP-style systems is called Hot Data. The data that just being inserted into your table is definitely a Hot Data.
The important moment for the table is when the data becomes Cold or mostly infrequently read-accessed, and meaning that it can be compressed into Columnstore format.

This does seem interesting and can be very helpful in using columnstore indexes across different data patterns.

Comments closed

Reversing Sort Order

Michael Swart shows how reversing index sort order can expose invalid assumptions in code:

Remember that this is an application problem and is not a SQL problem. We only get into trouble when applications (or people) expect results to be sorted when they’re not. So unless you have a tiny application, or a huge amount of discipline, it’s likely that there is some part of your application that assumes sorted results when it shouldn’t.

Here’s a method I used that attempts to identify such areas, exposing those assumptions. It involves reversing indexes.

It’s an interesting idea to try out in a dev environment.

Comments closed

Rebuilding Indexes By Partition

Andrea Allred shows how to rebuild indexes one partition at a time:

We have had an index job that has been failing for a while.  This is one of those things you really don’t want to clean up because no one is complaining, but you know you should.  I had heard that I could rebuild one partition at a time, but where to start?  Today, I worked my way through it, so here it is so that you can do it too.

First you need to find the biggest indexes, there is a good chance those are the ones that live on partitions. I am removing Primary Keys.

This can be a real time-saver if a majority of your partitions either are read-only or at least rarely update.

Comments closed

Finding Indexes

Kendra Little talks about index discovery:

Whenever you set up a script to create or drop an index, you want a safety check in there. Drop the index if it exists. Create the index if it doesn’t.

Or do something else programmatically. Checking if an index exists is a pretty frequent task. But there’s no simple function to test if an index exists in SQL Server.

Good article, and in the comments, Kendra talks about the next logical step:  consolidating indexes.

Comments closed

Index Scans

Gail Shaw proves that sometimes, an index scan isn’t a full index scan:

A scan of the entire index is over 1600 pages. This query read three. It’s a scan, but it’s a scan which stopped after reading one page of the leaf (the other two are likely the root and intermediate pages, used to locate the first page in the leaf).

The scan read one row and then stopped, because that’s all that was needed. It did that, because there was a 1 row row-goal added to the query. For more details on row goals, see Paul White’s article on the subject.

Read the whole thing.

Corollary:  sometimes a seek isn’t really a seek; sometimes it’s a scan even when the icon says “seek” because that’s more efficient.

1 Comment