Press "Enter" to skip to content

Category: ETL

Using Sqoop to Move Data into Hive

Jon Morisi continues a series on Sqoop:

Sqoop completes the import task by running MapReduce jobs importing the data to HDFS, and then running Hive commands (CREATE TABLE / LOAD DATA INPATH) to move the data to Hive.  The default HDFS location is: /user/[login]/[TABLENAME].  If you have any issues during the import you may need to remove the HDFS directory prior to re-running, or else you will get an Error:

Read on for sample calls and additional notes.

Comments closed

Streaming Pipelines in AWS with Flink and Kinesis Data Analytics

Steffen Hasumann shows us how to put together a streaming ETL pipeline in AWS using Apache Flink and Amazon Kinesis Data Analytics:

The remainder of this post discusses how to implement streaming ETL architectures with Apache Flink and Kinesis Data Analytics. The architecture persists streaming data from one or multiple sources to different destinations and is extensible to your needs. This post does not cover additional filtering, enrichment, and aggregation transformations, although that is a natural extension for practical applications.

This post shows how to build, deploy, and operate the Flink application with Kinesis Data Analytics, without further focusing on these operational aspects. It is only relevant to know that you can create a Kinesis Data Analytics application by uploading the compiled Flink application jar file to Amazon S3 and specifying some additional configuration options with the service. You can then execute the Kinesis Data Analytics application in a fully managed environment. For more information, see Build and run streaming applications with Apache Flink and Amazon Kinesis Data Analytics for Java Applications and the Amazon Kinesis Data Analytics developer guide.

Click through for the walkthrough.

Comments closed

Executing Azure Data Factory Pipelines with Azure Functions

Paul Andrew wants to execute an Azure Data Factory pipeline via an Azure Function call:

For the function itself, hopefully this is fairly intuitive once you’ve created your DataFactoryManagementClient and authenticated.

The only thing to be careful of is not using the CreateOrUpdateWithHttpMessagesAsync method by mistake. Make sure its Create Run. Sounds really obvious, but when you get code drunk names blur together and the very different method overloads will have you confused for hours!…. According to a friend 🙂

Read the whole thing.

Comments closed

Using Sqoop to Import Data into HDFS

Jon Morisi has a primer on Sqoop:

In this article, I’ll walk through using Sqoop to import data to Hadoop (HDFS).

Apache Sqoop(TM) is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases.”

With respect to SQL Server, Sqoop has two good use cases: pulling data from SQL Server into HDFS, and pulling data from HDFS into a staging table in SQL Server.

Comments closed

Resource Limitations with Azure Data Factory

Paul Andrew has a public service announcement for us:

As far as I can tell Microsoft do an excellent job at managing data centre capacity so I completely understand the reason for having limitations on resources in place. There is no such thing as a limitless cloud platform.

Note; in a lot of cases (as you’ll see in the below table for Data Factory) the MAX limitations are only soft restrictions that can easily be lifted via a support ticket. Please check before raising alerts and project risks.

Click through for the limits, and “contact support” definitely is good advice if you’re expecting to push past those limits.

Comments closed

Parameterizing a Data Factory Linked Service to a REST API

Meagan Longoria had to parameterize a linked service connecting to a REST API recently:

In order to pass dynamic values to a linked service, we need to parameterize the linked service, the dataset, and the activity.

I have a pipeline where I log the pipeline start to a database with a stored procedure, lookup a username in Key Vault, copy data from a REST API to data lake storage, and log the end of the pipeline with a stored procedure. My username and password are stored in separate secrets in Key Vault, so I had to do a lookup with a web activity to get the username. The password is retrieved using Key Vault inside the linked service. Data Factory doesn’t currently support retrieving the username from Key Vault so I had to roll my own Key Vault lookup there.

Click through for the instructions.

Comments closed

Improving Join Performance on ADF Data Flows

Mark Kromer has a few tips on improving ADF data flow join performance:

When you include literal values in your join conditions, Spark may see that as a requirement to perform a full cartesian product first, then filter out the joined values. But if you ensure that you (1) have column values from both sides of your join condition, you can avoid this Spark-induced cartesian product and improve the performance of your joins and data flows. (2) Avoid use of literal conditions to represent the results of one side of your join condition.

In other words, avoid this for your join condition:[email protected] == '1'Instead, implement that with a dummy derived column. 

There are several good tips in this post.

Comments closed

Loading Event Hubs from Cosmos DB

Annie Xu shows us how we can use Azure Functions to take data from Cosmos DB and populate Event Hubs:

One way to load data from Cosmos DB to Event hub is to use Azure Function. But although there is many coding samples out there to create such Azure Function. If you are like me do not have much application development experience, reading those code samples is bit channenging. Luckly, Azure Portal made is so easy.

Annie has a step-by-step walkthrough which makes it easy.

Comments closed

Azure Data Factory Notifications

Rayis Imayev walks us through three different techniques for sending notifications in Azure Data Factory:

While working on data integration projects and using Azure Data Factory as your main orchestration tool will help you to develop strategic forward thinking about your development tasks: to ponder on what your data sources are, point of destinations to land this information into a new data model and transformation steps to shape data from the source to its destination. Just like when you play chess and have to plan ahead several of your next moves.

Along with this structural thinking to develop and execute your data flows, timely notifications of when something goes left or right would give you additional peace of mind.

Something I appreciate in this post is that Rayis contrasts the Azure Data Factory techniques with SSIS methods, giving you a solid base for comparison.

Comments closed

Parsing ADF ARM Templates with T-SQL

Paul Andrew shows how you can use T-SQL to read an Azure Data Factory ARM template:

While documenting a customers data platform solution I decided it would be far easier if we could summarise the contents of a fairly complex Data Factory using its ARM Template. So, this is what I’ve done using T-SQL to parse the ARM Template JSON and output of series of tables containing details about the factory components.

That is quite the clever solution.

Comments closed