Mark Kromer takes us through debugging Azure Data Factory Data Flows:
When you are designing your mapping data flows in ADF, you are working against a live Azure Databricks Spark cluster. The size of that cluster is configurable via the Azure Integration Runtime. If you do not configure a custom Azure IR, then you will use the default Azure IR. That sets a very small cluster size by default of 4 cores for a single worker node and 4 cores for a single driver node. In most cases, while debugging and using data preview, that should be fine. But when you start exploring your data with column statistics or increase the sampling size in debug settings, you may find that you’ve exceeded the capacity on that small default cluster. Below are the steps you need to take to increase the size of your debug cluster.
Click through for step-by-step instructions.
Comments closed