Press "Enter" to skip to content

Category: Data

Random Number Generation in T-SQL

Andy Yun has a method:

This is a quick blog to “document” a T-SQL technique for generating random numbers. I’ve been using this for years, but don’t use it frequently enough to have it fully memorized. So whenever I do need it, I must constantly have to go look up whenever I need to use it.

Click through for Andy’s method. This will generate random numbers based on a uniform distribution: the likelihood of getting any value in the range is equal. If you want to build out some data that approximates a normal distribution, I have a blog post for that.

Comments closed

Operating the Data Wrangler in Microsoft Fabric Notebooks

Gilbert Quevauvilliers rustles up some data:

In this blog post I am going to show you an easy way to clean your data (which is often fixing data issues or mis-spelt data) using the new feature Launch Data Wranger using DataFrames

I had previously blogged about using Pandas data frames but this required extra steps and details, if you are interested in that blog post you can find it here: Did you know that there is an easy way to shape your data in Fabric Notebooks using Data Wrangler?

In this blog post I am going to show you how I cleaned up the data in my location column.

Read on for a demonstration of what you can do.

Comments closed

Exploring a Dataset for Microsoft Fabric Suitability

Eugene Meidinger continues a series on learning Microsoft Fabric:

This is week 1 where I try to take Magic the Gathering draft data to learn Microsoft Fabric. Check out week 0 for some reasoning why.

So, before I do anything else, I want to get a sense of the data I’m looking at to see if it’s suitable for this project. I download the data, and because it’s gzipped, I use 7-zip to open it up on windows 10, or Windows explorer on Windows 11. In either case, the first thing I notice is the huge size disparity. When compressed, it is a quarter of a gigabyte. Uncompressed, it’s about 10 GB. This tells us something.

Read on to learn more about the dataset and how Eugene tackled some of the exploratory data analysis.

I also agree completely with Eugene’s point about serendipity. Keeping your metaphorical eyes open will increase the likelihood that you’ll just happen upon something that can help you later, or something that serves a need you didn’t know you had. I used to wander around the library back in my university days because I didn’t know what I didn’t know about topics (that is, the “unknown unknown” quadrant), so I’d just pick up some books that caught my eye. Not all of them are hits, though enough were to make the strategy worthwhile.

Comments closed

SQL Server Data Import and Export via File

Ed Pollack opens an import-export business:

For the purposes of this article, we will focus solely on the task of moving a data set from one server to another. Topics such as ETL, ELT, data warehousing, data lakes, etc…are important and relevant to data movement, but out of scope for a focused discussion such as this.

Ed touches on why you might want to use files and then shares his recommendations for generating files from SQL Server data as well as importing data from flat files into SQL Server.

Comments closed

Microsoft Fabric and Dataverse

Jose Mendes let us know what’s going on with Dataverse:

If like me, you’ve been keeping taps on what Microsoft has been up to on the Power Platform world, you would have noticed that there are two concepts that are regularly referenced in their architectures and generally associated to each other, Azure Data Lake Storage (ADLS) Gen 2 and Common Data Model (CDM).

As Francesco referred in his blog, Microsoft ultimate vision is for the CDM to be the de facto standard data model, however, although there is a fair amount of resources talking about the capabilities and features, it can be a bit confusing to understand how you can actually store your data in the CDM format in ADLS and use it to run data analytics such as data warehousing, Power BI reporting and Machine Learning.

Read on for more of what’s happening on that front. I will admit that Dataverse tends to be way down on my list of priorities, but that’s because I’m a relational database snob.

Comments closed

Lost Updates with RCSI

Kendra Little shares a warning:

There are two isolation levels in SQL Server that use optimistic locking for disk-based tables:

  1. Read Committed Snapshot Isolation (RCSI), which changes the implementation of the default Read Committed Isolation level and enables statement-based consistency.
  2. Snapshot Isolation, which provides high consistency for transactions (which often contain multiple statements). Snapshot Isolation also provides support for identifying update conflicts.

Many folks get pretty nervous about RCSI when they learn that certain timing effects can happen with data modifications that don’t happen under Read Committed. The irony is that RCSI does solve many OTHER timing risks in Read Committed, and overall is more consistent, so sticking with the pessimistic implementation of Read Committed is not a great solution, either.

I don’t recall getting any kinds of update errors with RCSI and I’ve used it in some pretty heavy workloads.

Comments closed

String Regularization and Tokenization in SQL Server

Aaron Bertrand saves some space:

The Stack Exchange network logs a lot of web traffic – even compressed, we average well over a terabyte per month. And that is just a summarized cross-section of our overall raw log data, which we load into a database for downstream security and analytical purposes. Every month has its own table, allowing for partitioning-like sliding windows and selective indexes without the additional restrictions and management overhead. (Taryn Pratt talks about these tables in great detail in her post, Migrating a 40TB SQL Server Database.)

It’s no surprise that our log data is massive, but could it be smaller? Let’s take a look at a few typical rows. While these are not all of the columns or the exact column names, they should give an idea why 50 million visitors a month on Stack Overflow alone can add up quickly and punish our storage:

Click through for one technique Aaron has to tighten things up a bit.

Comments closed

Data Temperature in Microsoft Fabric

Marc Lelijveld breaks out the thermometer:

As part of Microsoft Fabric, a new storage mode to connect from Power BI to data in OneLake has been introduced. Direct Lake it makes to possible to use your data from OneLake in Power BI without taking an additional copy of the data. Where Direct Lake promises to deliver the performance of Import-mode with the real-time capabilities of Direct query, it is time to have a closer look how data gets loaded into memory and delving into the concept of data dictionary temperature.

In this blog I will explain when data gets loaded into memory, elaborate on how you can measure the dictionary temperature of your data and the effect of queries on the temperature.

Click through to see what affects this measure and how.

Comments closed

Built-In R Datasets

Adrian Tam continues a series on getting started in R:

The ecosystem in R contains not only the function libraries to help you perform statistical analysis but also the data library that gives you some famous datasets to test out your program. There are a lot of built-in datasets in R. In this post, you will:

  • Learn some of the built-in datasets
  • Know how to use these datasets

Let’s get started.

Most of these built-in sets are fairly small and able to help you illustrate a specific point.

Comments closed

Loading OpenStreetMap Data in Postgres

Ryan Lambert gets just the right amount of data:

Populating a PostGIS database with OpenStreetMap data is favorite way to start a new geospatial project. Loading a region of OpenStreetMap data enables you with data ranging from roads, buildings, water features, amenities, and so much more! The breadth and bulk of data is great, but it can turn into a hinderance especially for projects focused on smaller regions. This post explores how to use PgOSM Flex with custom layersets, multiple schemas, and osmium. The goal is load limited data for a larger region, while loading detailed data for a smaller, target region.

The larger region for this post will be the Colorado extract from Geofabrik. The smaller region will be the Fort Collins area, extracted from the Colorado file. The following image shows the data loaded in this post with two maps side-by-side. The minimal data loaded for all of Colorado is shown on the left and the full details of Fort Collins is on the right.

Click through for more details on these two examples.

Comments closed