Press "Enter" to skip to content

Breaking down the Limitations of R^2

M. Fatih Tüzen explains an important regression concept:

When building a statistical model, one of the first numbers analysts and data scientists often cite is the , or coefficient of determination. It’s widely reported in research, academic theses, and industry reports — and yet, frequently misunderstood or misused.

Does a high R² mean your model is good? Is it enough to evaluate model performance? What about its adjusted or predictive counterparts?

Read on to learn the answers to each question. H/T R-Bloggers.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.