Press "Enter" to skip to content

The Move to General Database Platforms

Steve Jones muses on specialization in data platforms:

It’s been a decade-plus of the Not-Only-SQL (NoSQL) movement where a large variety of specialized database platforms have been developed and sold. It seems that there are so many different platforms for data stores that you can find one for whatever specialized type of data you are working with. However, is that what people are doing to store data in their applications?

I saw this piece on the return to the general-purpose database, postulating that a lot of the NoSQL database platforms have added additional capabilities that make them less specialized and more generalized. I’ve seen some of this, just as many relational platforms have added features that compete with one of the NoSQL classes of databases. The NoSQL datastores might be adding SQL-like features because some of these platforms are too specialized, and the vendors have decided they need to cover a slightly wider set of use cases.

I see three overlapping forces here in play. First, you have vendors looking at Total Addressable Market for their specific technology (document, key-value, graph, whatever) versus the size of the relational database market and they salivate about getting those general-purpose fat stacks of cash. That’s what Steve is getting at in the graf above.

I think the second force is that specialization is ultimately a sucker’s game when it comes to databases. By specializing in one area, you ultimately sacrifice others. A tool like Elasticsearch is outstanding as a document search engine and it is miserable as an aggregation engine (ask me how I know—it’s like every 6 months, another product team decides that this time, they’ll get stats aggregation with Elasticsearch to work well…and six months after people actually start to use the thing, they move all the data to someplace else that is adequately queryable). Similarly, document databases are excellent for populating details in an application but is not at all excellent at aggregation or arbitrary queries connecting data together. Specialization seems like a great idea until new requirements come in which require advanced reporting.

The third force is that these systems are independent and getting them to talk to each other typically involves writing a lot of ETL/ELT code or using additional third-party tools. To the extent that there are data virtualization platforms, they’re either excruciatingly slow (e.g., PolyBase) or expensive and out of date because they cache the data periodically. A corollary of the third force is that different platforms tend to use different languages and trying to remember which of the three or four different languages you need to use to access data in this case can be a bit painful. This is part of the reason Feasel’s Law exists.

The net result of all of this is that it seems you end up with the same piece of information in several separate places and build complicated systems to keep these separate systems aligned. Each system is (theoretically) optimized for a given use case but you end up with more and more people spending their time gluing together data from disparate systems, ensuring that data in disparate systems matches up, or moving data between disparate systems. If you need to do all of this, then sure, do it. But if there’s a single general-purpose platform which does all of this stuff 90% as well, a large number of companies and use cases will do just fine with the single tool. And that’s why general-purpose database platforms are still so popular and why I believe they will remain popular indefinitely.

The biggest exception I see is caching but that’s because it’s more a “fire-and-forget” data storage system. If you do it right, you don’t have any ETL/ELT to or from the cache and if cache dies, your system continues to work (albeit slower than with the cache). It’s also tied to a specific application and only exists temporarily, so data mismatches are (hopefully) transitory enough not to matter.