Press "Enter" to skip to content

The Basics Of Naive Bayes Classifiers

I have the first post in a series up on using the Naive Bayes class of algorithms for classifying inputs:

Why Should We Use Naive Bayes? Is It the Best Classifier Out There?
Probably not, no. In fact, it’s typically a mediocre classifier—it’s the one you strive to beat with your fancy algorithm. So why even care about this one?
Because it’s fast, easy to understand, and it works reasonably well. In other words, this is the classifier you start with to figure out if it’s worth investing your time on a problem. If you need to hit 90% category accuracy and Naive Bayes is giving you 70%, you’re probably in good shape; if it’s giving you 20% accuracy, you might need to take another look at whether you have a viable solution given your data.

Click through to learn what day it is based on what some fictional fellow has as head covering. Also, learn what it is I actually mean when I let “update your priors” slip.