The Basics Of Docker For R Users

Colin Fay explains some of the core principles behind Docker, containerizing some R code along the way:

Docker is designed to enclose environments inside an image / a container. What this allows, for example, is to have a Linux machine on a Macbook, or a machine with R 3.3 when your main computer has R 3.5. Also, this means that you can use older versions of a package for a specific task, while still keeping the package on your machine up-to-date.
This way, you can “solve” dependencies issues: if ever you are afraid dependencies will break your analysis when packages are updated, build a container that will always have the software versions you desire: be it Linux, R, or any package.

Click through for the details. H/T R-bloggers

Related Posts

Visualizing with Heatmaps in R

Anisa Dhana shows how you can create a quick heatmap plot in R: To give your own colors use the scale_fill_gradientn function.ggplot(dat, aes(Age, Race)) + geom_raster(aes(fill = BMI)) + scale_fill_gradientn(colours=c("white", "red")) This is a quick example using ggplot2 but there are other heatmap libraries available too.

Read More

Predicting Intermittent Demand

Bruno Rodrigues shows one technique for forecasting intermittent data: Now, it is clear that this will be tricky to forecast. There is no discernible pattern, no trend, no seasonality… nothing that would make it “easy” for a model to learn how to forecast such data. This is typical intermittent demand data. Specific methods have been […]

Read More

Categories

January 2019
MTWTFSS
« Dec Feb »
 123456
78910111213
14151617181920
21222324252627
28293031