Writing Vectorized Code In R

John Mount helps us understand writing R code like a native:

This sort of difference, scalar oriented C++ being so much faster than scalar oriented R, is often distorted into “R is slow.”
This is just not the case. If we adapt the algorithm to be vectorized we get an R algorithm with performance comparable to the C++implementation!
Not all algorithms can be vectorized, but this one can, and in an incredibly simple way. The original algorithm itself (xlin_fits_R()) is a bit complicated, but the vectorized version (xlin_fits_V()) is literally derived from the earlier one by crossing out the indices. That is: in this case we can move from working over very many scalars (slow in R) to working over a small number of vectors (fast in R).

This is akin to writing set-based SQL instead of cursor-based SQL: you’re thinking in terms which make it easier for the interpreter (or optimizer, in the case of a database engine) to operate quickly over your inputs. It’s also one of a few reasons why I think learning R makes a lot of sense when you have a SQL background.

Related Posts

Inline Operators In R With wrapr

John Mount shows how to use inline operators in R with the wrapr package: The above code is assuming you have the wrapr package attached via already having run library('wrapr'). Notice we picked R-related operator names. We stayed away from overloading the + operator, as the arithmetic operators are somewhat special in how they dispatch in R. The goal wasn’t […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

January 2019
MTWTFSS
« Dec  
 123456
78910111213
14151617181920
21222324252627
28293031